Authentification of fruit spirits using HS-SPME/GC-FID and OPLS methods
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
33144614
PubMed Central
PMC7609540
DOI
10.1038/s41598-020-75939-0
PII: 10.1038/s41598-020-75939-0
Knihovny.cz E-zdroje
- MeSH
- alkoholické nápoje analýza MeSH
- chromatografie plynová metody MeSH
- mikroextrakce na pevné fázi metody MeSH
- ovoce chemie MeSH
- plamínková ionizace metody MeSH
- shluková analýza MeSH
- těkavé organické sloučeniny analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- těkavé organické sloučeniny MeSH
This research provides an accurate description of the origin for fruit spirits. In total, 63 samples of various kinds of fruit spirits (especially from apples, pears, plums, apricots and mirabelle) were analysed using headspace-solid phase microextraction and gas chromatography with flame-ionization detector. Obtained volatile profiles were treated and analysed by multivariate regression with a reduction of dimensionality-orthogonal projections to latent structure for the classification of fruit spirits according to their fruit of origin. Basic result of statistical analysis was the differentiation of spirits to groups with respect to fruit kind. Tested kinds of fruit spirits were strictly separated from each other. The selection was achieved with a specificity of 1.000 and a sensitivity of 1.000 for each kind of spirit. The statistical model was verified by an external validation. Hierarchical cluster analysis (calculation of distances by Ward's method) showed a similarity of volatile profiles of pome fruit spirits (apple and pear brandies) and stone fruit spirits (especially mirabelle and plum brandies).
Zobrazit více v PubMed
Spaho N, Durr P, Grba S, Velagic-Habul E, Blesic M. Effects of distillation cut on the distribution of higher alcohols and esters in brandy produced from three plum varieties. J. Inst. Brew. 2013;119:48–56. doi: 10.1002/jib.62. DOI
Tesevic V, et al. Volatile components from old plum brandies. Food Technol. Biotechnol. 2005;43:367–372.
Arrieta-Garay Y, et al. Aromatically enhanced pear distillates from blanquilla and conference varieties using a packed column. J. Agric. Food Chem. 2013;61:4936–4942. doi: 10.1021/jf304619e. PubMed DOI
Aubert C, Bony P, Chalot G, Hero V. Changes in physicochemical characteristics and volatile compounds of apricot (Prunus armeniaca L. cv. Bergeron) during storage and post-harvest maturation. Food Chem. 2010;119:1386–1398. doi: 10.1016/j.foodchem.2009.09.018. DOI
Coldea TE, Socaciu C, Moldovan Z, Mudura E. Minor volatile compounds in traditional homemade fruit brandies from transylvania-romania, as determined by GC-MS analysis. Not. Bot. Hortic. Agrobot. Cluj-Na. 2014;42:530–537. doi: 10.15835/nbha4229607. DOI
Ledauphin J, Le Milbeau C, Barillier D, Hennequin D. Differences in the volatile compositions of french labeled brandies (Armagnac, Calvados, Cognac, and Mirabelle) using GC-MS and PLS-DA. J. Agric. Food Chem. 2010;58:7782–7793. doi: 10.1021/jf9045667. PubMed DOI
Bajer T, et al. Chemical profiling of volatile compounds of various home-made fruit spirits using headspace solid-phase microextraction. J. Inst. Brew. 2017;123:105–112. doi: 10.1002/jib.386. DOI
Genovese A, et al. Comparison of the aroma compounds in apricot (Prunus armeniaca, L. cv. Pellecchiella) and apple (Malus pumila, L. cv. Annurca) raw distillates. Ital. J. Food Sci. 2004;16:185–196.
Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS) J. Chemom. 2002;16:119–128. doi: 10.1002/cem.695. DOI
Bylesjo M, et al. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 2006;20:341–351. doi: 10.1002/cem.1006. DOI
van Den Dool H, Kratz P. A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J. Chromatogr. A. 1963;11:463–471. doi: 10.1016/S0021-9673(01)80947-X. PubMed DOI
Akarachantachote N, Chadcham S, Saithanu K. Cutoff threshold of variable importance in projection for variable selection. Int. J. Pure Appl. Math. 2014;94:307–322. doi: 10.12732/ijpam.v94i3.2. DOI
Giannetti V, Mariani MB, Marini F, Torrelli P, Biancolillo A. Flavour fingerprint for the differentiation of Grappa from other Italian distillates by GC-MS and chemometrics. Food Control. 2019;105:123–130. doi: 10.1016/j.foodcont.2019.05.028. DOI
Eriksson L, Byrne T, Johansson E, Trygg J, Vikström C. 21 Hierarchical cluster analysis, HCA. In: Johansson E, Eriksson L, Trygg J, Vikström C, Byrne T, editors. Multi- and Megavariate Data Analysis Basic Principles and Applications. Umeå: Umetrics Academy; 2013. pp. 387–396.