Convexity Meningiomas in Patients with Neurofibromatosis Type 2: Long-Term Outcomes After Gamma Knife Radiosurgery
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
U54 GM104942
NIGMS NIH HHS - United States
PubMed
33152493
PubMed Central
PMC7988886
DOI
10.1016/j.wneu.2020.10.153
PII: S1878-8750(20)32355-X
Knihovny.cz E-zdroje
- Klíčová slova
- Convexity, Gamma Knife radiosurgery, Meningioma, Neurofibromatosis type 2,
- MeSH
- doba přežití bez progrese choroby MeSH
- dospělí MeSH
- edém mozku etiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- meningeální nádory komplikace patologie radioterapie MeSH
- meningeom komplikace patologie radioterapie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mnohočetné primární nádory komplikace radioterapie MeSH
- neurofibromatóza 2 komplikace MeSH
- radiochirurgie škodlivé účinky metody MeSH
- retrospektivní studie MeSH
- tumor burden MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Convexity meningiomas are common tumors requiring treatment in patients with neurofibromatosis type 2 (NF2). Although different therapeutic options are described for sporadic convexity meningioma, much less is known about these lesions in patients with NF2 despite their distinct biology and need for multiple treatments. We analyzed the value of Gamma Knife radiosurgery (GKRS) as definitive treatment for convexity meningiomas in patients with NF2. METHODS: This international multicenter retrospective study was approved by the International Radiosurgery Research Foundation. Patients with NF2 with at least 1 convexity meningioma and 6-month follow-up after primary GKRS were included. RESULTS: Inclusion criteria were met by 18 patients with NF2. A total of 120 convexity meningiomas (median treatment volume, 0.66 cm3 [range, 0.10-21.20 cm3]) were analyzed. Median follow-up after initial GKRS was 15.6 years (range, 0.6-25.5 years). Median age at GKRS was 32.5 years (range, 16-53 years). Median number of meningiomas per patient was 13 (range, 1-27), and median number of convexity lesions receiving GKRS per patient was 3.5 (range, 1-27). One case of tumor progression was reported 24 years after GKRS, leading to actuarial progression-free survival rates of 100% at 2, 5, and 10 years. No malignant transformation or death due to meningioma or radiosurgery was recorded. CONCLUSIONS: GKRS is safe and effective as definitive treatment of small to medium-sized convexity meningiomas in patients with NF2. Despite concerns about the particular mutational burden of these tumors, no malignant transformation manifested after treatment. GKRS represents a minimally invasive option that offers long-term tumor control to this specific group of patients.
Department of Neurological Surgery Na Homolce Hospital Prague Czech Republic
Department of Neurological Surgery University of Virginia Charlottesville Virginia USA
Department of Neurological Surgery West Virginia University Morgantown Virginia USA
Dominican Gamma Knife Center and CEDIMAT Hospital Santo Domingo Dominican Republic
House Ear Institute Los Angeles California USA
Post Graduate Institute of Medical Education and Research Chandigarh India
Zobrazit více v PubMed
Celtikci E, Kaymaz AM, Akgul G, Karaaslan B, Emmez OH, Borcek A. Retrospective analysis of 449 intracranial meningioma patients operated between 2007 and 2013 at a single institute. Turk Neurosurg. 2018;28:1–6. PubMed
Black PM, Morokoff AP, Zauberman J. Surgery for extra-axial tumors of the cerebral convexity and midline. Neurosurgery. 2008;62(6 Suppl 3):1115–1121 [discussion: 1121–1123]. PubMed
Sanai N, Sughrue ME, Shangari G, Chung K, Berger MS, McDermott MW. Risk profile associated with convexity meningioma resection in the modern neurosurgical era. J Neurosurg. 2010;112: 913–919. PubMed
Gupta A, Xu Z, Cohen-Inbar O, et al. Treatment of asymptomatic meningioma with Gamma Knife radiosurgery: long-term follow-up with volumetric assessment and clinical outcome. Clin Neurosurg. 2019;85:E889–E899. PubMed
Sughrue ME, Rutkowski MJ, Aranda D, Barani IJ, McDermott MW, Parsa AT. Treatment decision making based on the published natural history and growth rate of small meningiomas. J Neurosurg. 2010;113:1036–1042. PubMed
Sarris C, Sanai N. Convexity meningioma resection in the modern neurosurgical era. Handb Clin Neurol. 2020;170:87–92. PubMed
Kondziolka D, Madhok R, Dade Lunsford L, et al. Stereotactic radiosurgery for convexity meningiomas. J Neurosurg. 2009;111:458–463. PubMed
Smith MJ, Higgs JE, Bowers NL, et al. Cranial meningiomas in 411 neurofibromatosis type 2 (NF2) patients with proven gene mutations: clear positional effect of mutations, but absence of female severity effect on age at onset. J Med Genet. 2011;48:261–265. PubMed
Goutagny S, Kalamarides M. Meningiomas and neurofibromatosis. J Neurooncol. 2010;99:341–347. PubMed
Dirks MS, Butman JA, Kim HJ, et al. Long-term natural history of neurofibromatosis type 2-associated intracranial tumors. J Neurosurg. 2012; 117:109–117. PubMed PMC
Evers S, Verbaan D, Sanchez E, Peerdeman S. 3D volumetric measurement of neurofibromatosis type 2-associated meningiomas: association between tumor location and growth rate. World Neurosurg. 2015;84:1062–1069. PubMed
Goutagny S, Bah AB, Henin D, et al. Long-term follow-up of 287 meningiomas in neurofibromatosis type 2 patients: clinical, radiological, and molecular features. Neuro Oncol. 2012;14: 1090–1096. PubMed PMC
Li P, Wu T, Wang Y, et al. Clinical features of newly developed NF2 intracranial meningiomas through comparative analysis of pediatric and adult patients. Clin Neurol Neurosurg. 2020;194: 105799. PubMed
Liu A, Kuhn EN, Lucas JT, Laxton AW, Tatter SB, Chan MD. Gamma Knife radiosurgery for meningiomas in patients with neurofibromatosis Type 2. J Neurosurg. 2015;122:536–542. PubMed PMC
Baser ME, Friedman JM, Aeschliman D, et al. Predictors of the risk of mortality in neurofibromatosis 2. Am J Hum Genet. 2002;71:715–723. PubMed PMC
Goutagny S, Yang HW, Zucman-Rossi J, et al. Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin Cancer Res. 2010;16:4155–4164. PubMed
Bi WL, Abedalthagafi M, Horowitz P, et al. Genomic landscape of intracranial meningiomas. J Neurosurg. 2016;125:525–535. PubMed
Lee S, Karas PJ, Hadley CC, et al. The role of Merlin/NF2 loss in meningioma biology. Cancers (Basel). 2019;11:1633. PubMed PMC
Walker AJ, Ruzevick J, Malayeri AA, et al. Post-radiation imaging changes in the CNS: how can we differentiate between treatment effect and disease progression? Future Oncol. 2014;10: 1277–1297. PubMed PMC
Patibandla MR, Lee CC, Tata A, Addagada GC, Sheehan JP. Stereotactic radiosurgery for WHO grade I posterior fossa meningiomas: long-term outcomes with volumetric evaluation. J Neurosurg. 2018;129:1249–1259. PubMed
Mehta GU, Zenonos G, Patibandla MR, et al. Outcomes of stereotactic radiosurgery for foramen magnum meningiomas: an international multicenter study. J Neurosurg. 2018;129:383–389. PubMed
Aboukais R, Zairi F, Baroncini M, et al. Intracranial meningiomas and neurofibromatosis type 2. Acta Neurochir (Wien). 2013;155:997–1001 [discussion: 1001]. PubMed
Meningiomas. Their classification, regional behaviour, life history, and surgical end results. Bull Med Libr Assoc. 1938;27:185.
Girvigian MR, Chen JC, Rahimian J, Miller MJ, Tome M. Comparison of early complications for patients with convexity and parasagittal meningiomas treated with either stereotactic radiosurgery or fractionated stereotactic radiotherapy. Neurosurgery. 2008;62(5 Suppl):A19–A27 [discussion: A27-A28]. PubMed
Hasegawa T, Kida Y, Yoshimoto M, Iizuka H, Ishii D, Yoshida K. Gamma Knife surgery for convexity, parasagittal, and falcine meningiomas. J Neurosurg. 2011;114:1392–1398. PubMed
Morokoff AP, Zauberman J, Black PM. Surgery for convexity meningiomas. Neurosurgery. 2008;63: 427–433 [discussion: 433–434]. PubMed
Alvernia JE, Dang ND, Sindou MP. Convexity meningiomas: study of recurrence factors with special emphasis on the cleavage plane in a series of 100 consecutive patients. J Neurosurg. 2011;115: 491–498. PubMed
Nguyen T, Chung LK, Sheppard JP, et al. Surgery versus stereotactic radiosurgery for the treatment of multiple meningiomas in neurofibromatosis type 2: illustrative case and systematic review. Neurosurg Rev. 2019;42:85–96. PubMed
Pollock BE, Stafford SL, Utter A, Giannini C, Schreiner SA. Stereotactic radiosurgery provides equivalent tumor control to Simpson Grade 1 resection for patients with small- to medium-size meningiomas. Int J Radiat Oncol Biol Phys. 2003;55: 1000–1005. PubMed
Salvetti DJ, Nagaraja TG, Levy C, Xu Z, Sheehan J. Gamma Knife surgery for the treatment of patients with asymptomatic meningiomas. J Neurosurg. 2013;119:487–493. PubMed
Sheehan JP, Starke RM, Kano H, et al. Gamma Knife radiosurgery for posterior fossa meningiomas: a multicenter study. J Neurosurg. 2015;122: 1479–1489. PubMed
Sheehan JP, Williams BJ, Yen CP. Stereotactic radiosurgery for WHO grade I meningiomas. J Neurooncol. 2010;99:407–416. PubMed
Starke RM, Nguyen JH, Rainey J, et al. Gamma Knife surgery of meningiomas located in the posterior fossa: factors predictive of outcome and remission. J Neurosurg. 2011;114:1399–1409. PubMed
Starke RM, Nguyen JH, Reames DL, Rainey J, Sheehan JP. Gamma Knife radiosurgery of meningiomas involving the foramen magnum. J Craniovertebr Junction Spine. 2010;1:23–28. PubMed PMC
Starke RM, Przybylowski CJ, Sugoto M, et al. Gamma Knife radiosurgery of large skull base meningiomas. J Neurosurg. 2015;122:363–372. PubMed
Starke RM, Williams BJ, Hiles C, Nguyen JH, Elsharkawy MY, Sheehan JP. Gamma knife surgery for skull base meningiomas. J Neurosurg. 2012;116: 588–597. PubMed
Williams BJ, Yen CP, Starke RM, et al. Gamma Knife surgery for parasellar meningiomas: long-term results including complications, predictive factors, and progression-free survival. J Neurosurg. 2011;114:1571–1577. PubMed
Kondziolka D, Levy EI, Niranjan A, Flickinger JC, Lunsford LD. Long-term outcomes after meningioma radiosurgery: physician and patient perspectives. J Neurosurg. 1999;91:44–50. PubMed
Kondziolka D, Lunsford LD, Coffey RJ, Flickinger JC. Stereotactic radiosurgery of meningiomas. J Neurosurg. 1991;74:552–559. PubMed
Kondziolka D, Lunsford LD, Coffey RJ, Flickinger JC. Gamma Knife radiosurgery of meningiomas. Stereotact Funct Neurosurg. 1991;57:11–21. PubMed
Santacroce A, Walier M, Regis J, et al. Long-term tumor control of benign intracranial meningiomas after radiosurgery in a series of 4565 patients. Neurosurgery. 2012;70:32–39. PubMed
Baser ME, Evans DG, Jackler RK, Sujansky E, Rubenstein A. Neurofibromatosis 2, radiosurgery and malignant nervous system tumours. Br J Cancer. 2000;82:998. PubMed PMC
Evans DG, Birch JM, Ramsden RT, Sharif S, Baser ME. Malignant transformation and new primary tumours after therapeutic radiation for benign disease: substantial risks in certain tumour prone syndromes. J Med Genet. 2006;43:289–294. PubMed PMC
Birckhead B, Sio TT, Pollock BE, Link MJ, Laack NN. Gamma Knife radiosurgery for neurofibromatosis type 2-associated meningiomas: a 22-year patient series. J Neurooncol. 2016; 130:553–560. PubMed
Gao F, Li M, Wang Z, Shi L, Lou L, Zhou J. Efficacy and safety of gamma knife radiosurgery for meningiomas in patients with neurofibromatosis type 2: a long-term follow-up single-center study. World Neurosurg. 2019;125:e929–e936. PubMed
Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD. Gamma Knife radiosurgery of imaging-diagnosed intracranial meningioma. Int J Radiat Oncol Biol Phys. 2003;56:801–806. PubMed