Physiological and Transcriptomic Response of Grey Poplar (Populus ×canescens Aiton Sm.) to Cadmium Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MZE-RO0118
Ministerstvo Zemědělství
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33158073
PubMed Central
PMC7694188
DOI
10.3390/plants9111485
PII: plants9111485
Knihovny.cz E-zdroje
- Klíčová slova
- cadmium, gene expression, grey poplar, microsatellite analysis, mineral uptake, translocation factor,
- Publikační typ
- časopisecké články MeSH
(1) Background: Populus ×canescens (Aiton) Sm. is a fast-growing woody plant belonging to the family Salicaceae. Two poplar genotypes characterized by unique phenotypic traits (TP11 and TP20) were chosen to be characterized and tested for a physiological and transcriptomic response to Cd stress. (2) Methods: A comparative analysis of the effects of exposure to high cadmium (Cd) concentrations (10 µM and 100 µM) of TP11 and TP20 was performed. (3) Results: Neither of the tested Cd concentration negatively affected plant growth; however, the chlorophyll content significantly decreased. The potassium (K) content was higher in the shoots than in the roots. The magnesium concentrations were only slightly affected by Cd treatment. The zinc content in the shoots of TP20 was lower than that in the shoots of TP11. Cd accumulation was higher in the roots than in the shoots. After 10 days of exposure, 10 µM Cd resulted in comparable amounts of Cd in the roots and shoots of TP20. The most significant change in transcript amount was observed in endochitinase 2, 12-oxophytodienoate reductase 1 and phi classglutathione S-transferase. (4) Conclusions: Our study provided new insights for effective assessing the ability of different poplar genotypes to tolerate Cd stress and underlying Cd tolerance.
Forestry and Game Management Research Institute Strnady 25202 Jiloviste Czech Republic
The Czech Academy of Sciences Institute of Experimental Botany 16502 Prague Czech Republic
Zobrazit více v PubMed
Wu D., Yamaji N., Yamane M., Kashino-Fujii M., Sato K., Ma J.F. The HvNramp5 Transporter Mediates Uptake of Cadmium and Manganese, But Not Iron. Plant Physiol. 2016;172:1899–1910. doi: 10.1104/pp.16.01189. PubMed DOI PMC
Liu H., Zhao H., Wu L., Liu A., Zhao F.-J., Xu W. Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulatorSedum plumbizincicola. New Phytol. 2017;215:687–698. doi: 10.1111/nph.14622. PubMed DOI
Zhang J., Martinoia E., Lee Y. Vacuolar Transporters for Cadmium and Arsenic in Plants and their Applications in Phytoremediation and Crop Development. Plant Cell Physiol. 2018;59:1317–1325. doi: 10.1093/pcp/pcy006. PubMed DOI
Garmash E., Golovko T.K. Effect of cadmium on growth and respiration of barley plants grown under two temperature regimes. Russ. J. Plant Physiol. 2009;56:343–347. doi: 10.1134/S1021443709030066. DOI
Li S., Yang W., Yang T., Chen Y., Ni W. Effects of Cadmium Stress on Leaf Chlorophyll Fluorescence and Photosynthesis ofElsholtzia argyi—A Cadmium Accumulating Plant. Int. J. Phytoremediat. 2014;17:85–92. doi: 10.1080/15226514.2013.828020. PubMed DOI
Lin L., Zhou W., Dai H., Cao F., Zhang G., Wu F. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J. Hazard. Mater. 2012;236:343–351. doi: 10.1016/j.jhazmat.2012.08.012. PubMed DOI
Nazar R., Iqbal N., Masood A., Khan M.I.R., Syeed S., Khan N.A. Cadmium Toxicity in Plants and Role of Mineral Nutrients in Its Alleviation. Am. J. Plant Sci. 2012;3:1476–1489. doi: 10.4236/ajps.2012.310178. DOI
Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012;2012:1–26. doi: 10.1155/2012/217037. DOI
Cui W., Wang H., Song J., Cao X., Rogers H.J., Francis D., Jia C., Sun L., Hou M., Yang Y., et al. Cell cycle arrest mediated by Cd-induced DNA damage in Arabidopsis root tips. Ecotoxicol. Environ. Saf. 2017;145:569–574. doi: 10.1016/j.ecoenv.2017.07.074. PubMed DOI
DalCorso G., Farinati S., Maistri S., Furini A. How Plants Cope with Cadmium: Staking All on Metabolism and Gene Expression. J. Integr. Plant Biol. 2008;50:1268–1280. doi: 10.1111/j.1744-7909.2008.00737.x. PubMed DOI
Yamaguchi H., Fukuoka H., Arao T., Ohyama A., Nunome T., Miyatake K., Negoro S. Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum. J. Exp. Bot. 2009;61:423–437. doi: 10.1093/jxb/erp313. PubMed DOI PMC
Garbisu C., Hernández-Allica J., Barrutia O., Alkorta I., Becerril J.M. Phytoremediation: A Technology Using Green Plants to Remove Contaminants from Polluted Areas. Rev. Environ. Health. 2002;17:173–188. doi: 10.1515/REVEH.2002.17.3.173. PubMed DOI
Reeves R.D., Van Der Ent A., Baker A.J.M. Agromining: Farming for Metals. Springer; Cham, Switzerland: 2017. Global Distribution and Ecology of Hyperaccumulator Plants; pp. 75–92.
Brown S.L., Chaney R.L., Angle J.S., Baker A.J.M. Zinc and Cadmium Uptake by Hyperaccumulator Thlaspi caerulescens and Metal Tolerant Silene vulgaris Grown on Sludge-Amended Soils. Environ. Sci. Technol. 1995;29:1581–1585. doi: 10.1021/es00006a022. PubMed DOI
Hernández-Allica J., Becerril J.M., Zárate O., Garbisu C. Assessment of the Efficiency of a Metal Phytoextraction Process with Biological Indicators of Soil Health. Plant Soil. 2006;281:147–158. doi: 10.1007/s11104-005-4081-7. DOI
Epelde L., Becerril J.M., Kowalchuk G.A., Deng Y., Zhou J., Garbisu C. Impact of Metal Pollution and Thlaspi caerulescens Growth on Soil Microbial Communities. Appl. Environ. Microbiol. 2010;76:7843–7853. doi: 10.1128/AEM.01045-10. PubMed DOI PMC
Broadhurst C.L., Chaney R.L. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil. Front. Plant Sci. 2016;7:451. doi: 10.3389/fpls.2016.00451. PubMed DOI PMC
Huang Y., Miyauchi K., Inoue C., Endo G. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata. Biosci. Biotechnol. Biochem. 2015;80:1–5. doi: 10.1080/09168451.2015.1107461. PubMed DOI
Tlustoš P., Břendová K., Száková J., Najmanová J., Koubová K. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions. Int. J. Phytoremediat. 2016;18:110–115. doi: 10.1080/15226514.2014.981243. PubMed DOI
He J., Ma C., Ma Y., Li H., Kang J., Liu T., Polle A., Peng C., Luo Z.-B. Cadmium tolerance in six poplar species. Environ. Sci. Pollut. Res. 2013;20:163–174. doi: 10.1007/s11356-012-1008-8. PubMed DOI
Martinsen G.D., Whitham T.G., Turek R.J., Keim P. Hybrid populations selectively filter gene introgression between species. Evol. Int. J. Org. Evol. 2001;55:1325–1335. doi: 10.1111/j.0014-3820.2001.tb00655.x. PubMed DOI
Lexer C., Fay M.F., Joseph J.A., Nica M.-S., Heinze B. Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): The role of ecology and life history in gene introgression. Mol. Ecol. 2005;14:1045–1057. doi: 10.1111/j.1365-294X.2005.02469.x. PubMed DOI
Suvanto L.I., Latva-Karjanmaa T.B. Clone identification and clonal structure of the European aspen (Populus tremula) Mol. Ecol. 2005;14:2851–2860. doi: 10.1111/j.1365-294X.2005.02634.x. PubMed DOI
Puschenreiter M., Türktaş M., Sommer P., Wieshammer G., Laaha G., Wenzel W.W., Hauser M.-T. Differentiation of metallicolous and non-metallicolous Salix caprea populations based on phenotypic characteristics and nuclear microsatellite (SSR) markers. Plant Cell Environ. 2010;33:1641–1655. doi: 10.1111/j.1365-3040.2010.02170.x. PubMed DOI PMC
Anwar G.M., Helmey R.K., Mostafa Y.M. Assesment of genetic diversityin garlic clones using SSR and ISSR markers. [(accessed on 22 July 2019)];Egypt. J. Genet. Cytol. 2017 45:333–345. doi: 10.21608/ejgc.2016.9585. Available online: http://journal.esg.net.eg/index.php/EJGC/article/view/233. DOI
Dimsoski P., Toth G.P. Development of DNA-based microsatellite marker technology for studies of genetic diversity in stressor impacted populations. Ecotoxicology. 2001;10:229–232. doi: 10.1023/A:1016621511695. PubMed DOI
Selkoe K.A., Toonen R.J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 2006;9:615–629. doi: 10.1111/j.1461-0248.2006.00889.x. PubMed DOI
Vieira M.L.C., Santini L., Diniz A.L., Munhoz C.D.F. Microsatellite markers: What they mean and why they are so useful. Genet. Mol. Biol. 2016;39:312–328. doi: 10.1590/1678-4685-GMB-2016-0027. PubMed DOI PMC
Wan X., Landhäusser S.M., Lieffers V.J., Zwiazek J.J. Signals controlling root suckering and adventitious shoot formation in aspen (Populus tremuloides) Tree Physiol. 2006;26:681–687. doi: 10.1093/treephys/26.5.681. PubMed DOI
Baryla A., Carrier P., Franck F., Coulomb C., Sahut C., Havaux M. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: Causes and consequences for photosynthesis and growth. Planta. 2001;212:696–709. doi: 10.1007/s004250000439. PubMed DOI
Paunov M., Koleva L., Vassilev A., Vangronsveld J., Goltsev V. Effects of Different Metals on Photosynthesis: Cadmium and Zinc Affect Chlorophyll Fluorescence in Durum Wheat. Int. J. Mol. Sci. 2018;19:787. doi: 10.3390/ijms19030787. PubMed DOI PMC
Ondrasek G., Rengel Z., Romic D. Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity. Ecotoxicol. Environ. Saf. 2018;151:55–61. doi: 10.1016/j.ecoenv.2017.12.055. PubMed DOI
Zhan Y.-H., Zhang C., Zheng Q.-X., Huang Z.-A., Yu C.-L. Cadmium stress inhibits the growth of primary roots by interfering auxin homeostasis in Sorghum bicolor seedlings. J. Plant Biol. 2017;60:593–603. doi: 10.1007/s12374-017-0024-0. DOI
Schützendübel A., Nikolova P., Rudolf C., Polle A. Cadmium and H2O2-induced oxidative stress in Populus × canescens roots. Plant Physiol. Biochem. 2002;40:577–584. doi: 10.1016/S0981-9428(02)01411-0. DOI
Jiang H., Yang J., Zhang J. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ. Pollut. 2007;147:750–756. doi: 10.1016/j.envpol.2006.09.006. PubMed DOI
Kapoor D., Kaur S., Bhardwaj R. Physiological and Biochemical Changes inBrassica junceaPlants under Cd-Induced Stress. BioMed Res. Int. 2014;2014:1–13. doi: 10.1155/2014/726070. PubMed DOI PMC
Dotaniya M.L., Meena V.D., Basak B.B., Meena R.S. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. Potassium Uptake by Crops as Well as Microorganisms; pp. 267–280.
Sadeghipour O. Enhancing Cadmium Tolerance in Common Bean Plants by Potassium Application. Philipp. Agric. Sci. 2018;101:167–175.
Liu S., Yang R., Tripathi D.K., Li X., Jiang M., Lv B., Ma M., Qibing C. RETRACTED: Signalling cross-talk between nitric oxide and active oxygen in Trifolium repens L. plants responses to cadmium stress. Environ. Pollut. 2018;239:53–68. doi: 10.1016/j.envpol.2018.03.106. PubMed DOI
Zhang G., Fukami M., Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crop. Res. 2002;77:93–98. doi: 10.1016/S0378-4290(02)00061-8. DOI
Rivetta A., Negrini N., Cocucci M. Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ. 1997;20:600–608. doi: 10.1111/j.1365-3040.1997.00072.x. DOI
Tkalec M., Štefanić P.P., Cvjetko P., Šikić S., Pavlica M., Balen B. The Effects of Cadmium-Zinc Interactions on Biochemical Responses in Tobacco Seedlings and Adult Plants. PLoS ONE. 2014;9:e87582. doi: 10.1371/journal.pone.0087582. PubMed DOI PMC
Courbot M., Willems G., Motte P., Arvidsson S., Roosens N., Saumitou-Laprade P., Verbruggen N. A Major Quantitative Trait Locus for Cadmium Tolerance in Arabidopsis halleri Colocalizes with HMA4, a Gene Encoding a Heavy Metal ATPase. Plant Physiol. 2007;144:1052–1065. doi: 10.1104/pp.106.095133. PubMed DOI PMC
Morel M., Crouzet J., Gravot A., Auroy P., Leonhardt N., Vavasseur A., Richaud P. AtHMA3, a P1B-ATPase Allowing Cd/Zn/Co/Pb Vacuolar Storage in Arabidopsis. Plant Physiol. 2008;149:894–904. doi: 10.1104/pp.108.130294. PubMed DOI PMC
Di Lonardo S., Capuana M., Arnetoli M., Gabbrielli R., Gonnelli C. Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ. Sci. Pollut. Res. 2010;18:82–90. doi: 10.1007/s11356-010-0354-7. PubMed DOI
Nikolić N., Zoric L., Cvetković I., Pajević S., Borišev M., Orlović S. Assessment of cadmium tolerance and phytoextraction ability in young Populus deltoides L. and Populus × euramericana plants through morpho-anatomical and physiological responses to growth in cadmium enriched soil. IForest-Biogeosci. For. 2017;10:635–644. doi: 10.3832/ifor2165-010. DOI
Redovniković I.R., De Marco A., Proietti C., Hanousek K., Sedak M., Bilandžić N., JakovljeviĆ T. Poplar response to cadmium and lead soil contamination. Ecotoxicol. Environ. Saf. 2017;144:482–489. doi: 10.1016/j.ecoenv.2017.06.011. PubMed DOI
Pietrini F., Zacchini M., Iori V., Pietrosanti L., Ferretti M., Massacci A. Spatial distribution of cadmium in leaves and its impact on photosynthesis: Examples of different strategies in willow and poplar clones. Plant Biol. 2009;12:355–363. doi: 10.1111/j.1438-8677.2009.00258.x. PubMed DOI
Vollenweider P., Cosio C., Günthardt-Goerg M.S., Keller C. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) Environ. Exp. Bot. 2006;58:25–40. doi: 10.1016/j.envexpbot.2005.06.012. DOI
Cosio C., DeSantis L., Frey B., Diallo S., Keller C. Distribution of cadmium in leaves of Thlaspi caerulescens. J. Exp. Bot. 2005;56:765–775. doi: 10.1093/jxb/eri062. PubMed DOI
Kumar M., Brar A., Yadav M., Chawade A., Vivekanand V., Pareek N. Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens. Agriculture. 2018;8:88. doi: 10.3390/agriculture8070088. DOI
Cao J., Tan X. Comprehensive Analysis of the Chitinase Family Genes in Tomato (Solanum lycopersicum) Plants. 2019;8:52. doi: 10.3390/plants8030052. PubMed DOI PMC
Békésiová B., Hraška Š., Libantova J., Moravčíková J., Matušíková I. Heavy-metal stress induced accumulation of chitinase isoforms in plants. Mol. Biol. Rep. 2007;35:579–588. doi: 10.1007/s11033-007-9127-x. PubMed DOI
Gálusová T., Rybanský Ľ., Mészáros P., Spieß N., Piršelová B., Kuna R., Libantova J., Moravčíková J., Hauptvogel P., Matušíková I. Variable responses of soybean chitinases to arsenic and cadmium stress at the whole plant level. Plant Growth Regul. 2014;76:147–155. doi: 10.1007/s10725-014-9984-y. DOI
Breithaupt C., Kurzbauer R., Schaller F., Stintzi A., Schaller A., Huber R., Macheroux P., Clausen T. Structural Basis of Substrate Specificity of Plant 12-Oxophytodienoate Reductases. J. Mol. Biol. 2009;392:1266–1277. doi: 10.1016/j.jmb.2009.07.087. PubMed DOI
Xiang C.-B., Oliver D.J. Glutathione Metabolic Genes Coordinately Respond to Heavy Metals and Jasmonic Acid in Arabidopsis. Plant Cell. 1998;10:1539. doi: 10.1105/tpc.10.9.1539. PubMed DOI PMC
Maksymiec W., Krupa Z. The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ. Exp. Bot. 2006;57:187–194. doi: 10.1016/j.envexpbot.2005.05.006. DOI
Liu T., Liu S., Guan H., Ma L., Chen Z., Gu H., Qu L. Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb) Environ. Exp. Bot. 2009;67:377–386. doi: 10.1016/j.envexpbot.2009.03.016. DOI
Velazhahan R., Datta S.K., Muthukrishnan S. Pathogenesis-Related Proteins in Plants. CRC Press; Boca Raton, FL, USA: 1999. The PR-5 family: Thaumatin-like proteins; pp. 107–129. DOI
Sarowar S., Kim Y.J., Kim E.N., Kim K.D., Hwang B.K., Islam R., Shin J.S. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep. 2005;24:216–224. doi: 10.1007/s00299-005-0928-x. PubMed DOI
Fecht-Christoffers M.M., Braun H.-P., Lemaitre-Guillier C., Vandorsselaer A., Horst W.J. Effect of Manganese Toxicity on the Proteome of the Leaf Apoplast in Cowpea. Plant Physiol. 2003;133:1935–1946. doi: 10.1104/pp.103.029215. PubMed DOI PMC
Júnior W.V.A., Neto C.F.D.O., Filho B.G.D.S., Amarante C.B.D., Cruz E.D., Okumura R.S., Barbosa A.V.C., De Sousa D.J.P., Teixeira J., Botelho A.D.S. Effect of cadmium on young plants of Virola surinamensis. AoB Plants. 2019;11:plz022. doi: 10.1093/aobpla/plz022. PubMed DOI PMC
Lee Y., Donghwan S., Won-Yong S., InHwan H., Youngsook L. Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol. Biol. 2004;54:805–815. doi: 10.1007/s11103-004-0190-6. PubMed DOI
Gullner G., Komives T., Király L., Schröder P. Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions. Front. Plant Sci. 2018;9:1836. doi: 10.3389/fpls.2018.01836. PubMed DOI PMC
Khan N., Hu C.-M., Khan W.A., Hou X. Genome-Wide Identification, Classification, and Expression Divergence of Glutathione-Transferase Family in Brassica rapa under Multiple Hormone Treatments. BioMed Res. Int. 2018;2018:1–19. doi: 10.1155/2018/6023457. PubMed DOI PMC
Srivastava D., Verma G., Chauhan A.S., Pande V., Chakrabarty D. Rice (Oryza sativa L.) tau class glutathione S-transferase (OsGSTU30) overexpression in Arabidopsis thaliana modulates a regulatory network leading to heavy metal and drought stress tolerance. Metallomics. 2019;11:375–389. doi: 10.1039/C8MT00204E. PubMed DOI
Yang Q., Liu Y.-J., Zeng Q. Overexpression of three orthologous glutathione S-transferases from Populus increased salt and drought resistance in Arabidopsis. Biochem. Syst. Ecol. 2019;83:57–61. doi: 10.1016/j.bse.2019.01.001. DOI
Li L., Hou M., Cao L., Xia Y., Shen Z., Hu Z. Glutathione S-transferases modulate Cu tolerance in Oryza sativa. Environ. Exp. Bot. 2018;155:313–320. doi: 10.1016/j.envexpbot.2018.07.007. DOI
Du J., Ren J., Ye X., Hou A., Fu W., Mei F. Genome-wide identification and expression analysis of the glutathione S-transferase (GST) family under different developmental tissues and abiotic stresses in Chinese cabbage (Brassica rapa ssp. pekinensis) PeerJ. 2018 doi: 10.7287/peerj.preprints.26629v1. DOI
Lan T., Yang Z.-L., Yang X., Liu Y.-J., Wang X.-R., Zeng Q. Extensive Functional Diversification of the Populus Glutathione S-Transferase Supergene Family. Plant Cell. 2009;21:3749–3766. doi: 10.1105/tpc.109.070219. PubMed DOI PMC
Kieffer P., Dommes J., Hoffmann L., Hausman J.-F., Renaut J. Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics. 2008;8:2514–2530. doi: 10.1002/pmic.200701110. PubMed DOI
Tognetti V.B., Van Aken O., Morreel K., Vandenbroucke K., Van De Cotte B., De Clercq I., Chiwocha S., Fenske R., Prinsen E., Boerjan W., et al. Perturbation of Indole-3-Butyric Acid Homeostasis by the UDP-Glucosyltransferase UGT74E2 Modulates Arabidopsis Architecture and Water Stress Tolerance. Plant Cell. 2010;22:2660–2679. doi: 10.1105/tpc.109.071316. PubMed DOI PMC
Hu Y.F., Zhou G., Na X.F., Yang L., Bin Nan W., Liu X., Zhang Y.Q., Li J.L., Bi Y. Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J. Plant Physiol. 2013;170:965–975. doi: 10.1016/j.jplph.2013.02.008. PubMed DOI
Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Van Der Schoot J., Pospíšková M., Vosman B., Smulders M.J.M. Development and characterization of microsatellite markers in black poplar (Populus nigra L.) Theor. Appl. Genet. 2000;101:317–322. doi: 10.1007/s001220051485. DOI
Smulders M.J.M., Van Der Schoot J., Arens P., Vosman B. Trinucleotide repeat microsatellite markers for black poplar (Populus nigra L.) Mol. Ecol. Notes. 2001;1:188–190. doi: 10.1046/j.1471-8278.2001.00071.x. DOI
Tuskan G.A., Gunter L.E., Yang Z.K., Yin T., Sewell M.M., DiFazio S.P. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can. J. For. Res. 2004;34:85–93. doi: 10.1139/x03-283. DOI
Loo M.V., Joseph J.A., Heinze B., Fay M.F., Lexer C. Clonality and spatial genetic structure in Populus × canescens and its sympatric backcross parent P. alba in a Central European hybrid zone. New Phytol. 2008;177:506–516. PubMed
Politov D.V., Belokon M.M., Belokon Y.S., Polyakova T.A., Shatokhina A.V., Mudrik E.A., Azarova A.B., Filippov M.V., Shestibratov K.A. Application of Microsatellite Loci for Molecular Identification of Elite Genotypes, Analysis of Clonality, and Genetic Diversity in Aspen Populus tremula L. (Salicaceae) Int. J. Plant Genom. 2015;2015:1–11. doi: 10.1155/2015/261518. PubMed DOI PMC
Pokorna E., Cizkova L., Machova P., Cvrckova H., Burianek V., Komarkova M. Characterization of genetic diversity of local population of grey poplar (Populus × canescens Aiton Sm.) using SSR marers and phenotypic evaluation. Rep. For. Res. 2018;63:281–289.
Guichoux E., Lagache L., Wagner S., Chaumeil P., Léger P., Lepais O., Lepoittevin C., Malausa T., Revardel E., Salin F., et al. Current trends in microsatellite genotyping. Mol. Ecol. Resour. 2011;11:591–611. doi: 10.1111/j.1755-0998.2011.03014.x. PubMed DOI
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3 doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Brentner L.B., Mukherji S.T., Merchie K.M., Yoon J.M., Schnoor J.L., Van Aken B. Expression of glutathione S-transferases in poplar trees (Populus trichocarpa) exposed to 2,4,6-trinitrotoluene (TNT) Chemosphere. 2008;73:657–662. doi: 10.1016/j.chemosphere.2008.07.059. PubMed DOI
Basa B., Solti Á., Sárvári É., Tamás L. Housekeeping gene selection in poplar plants under Cd-stress: Comparative study for real-time PCR normalisation. Funct. Plant Biol. 2009;36:1079–1087. doi: 10.1071/FP09073. PubMed DOI
Kieffer P., Schröder P., Dommes J., Hoffmann L., Renaut J., Hausman J.-F. Proteomic and enzymatic response of poplar to cadmium stress. J. Proteom. 2009;72:379–396. doi: 10.1016/j.jprot.2009.01.014. PubMed DOI
He J., Li H., Luo J., Ma C., Li S., Qu L., Gai Y., Jiang X., Janz D., Polle A., et al. A Transcriptomic Network Underlies Microstructural and Physiological Responses to Cadmium in Populus × canescens. Plant Physiol. 2013;162:424–439. doi: 10.1104/pp.113.215681. PubMed DOI PMC
Kohler A., Blaudez D., Chalot M., Martin F. Cloning and expression of multiple metallothioneins from hybrid poplar. New Phytol. 2004;164:83–93. doi: 10.1111/j.1469-8137.2004.01168.x. PubMed DOI
Gaudet M., Pietrini F., Beritognolo I., Iori V., Zacchini M., Massacci A., Mugnozza G.S., Sabatti M. Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Tree Physiol. 2011;31:1309–1318. doi: 10.1093/treephys/tpr088. PubMed DOI
Sumanta N., Haque C., Nishika J., Suprakash R. Spectrophotometric Analysis of Chlorophylls and Carotenoids from Commonly Grown Fern Species by Using Various Extracting Solvents. Res. J. Chem. Sci. 2014;4:63–69.
Hoagland D.R., Arnon D.I. Growing Plants without Soil by the Water-Culture Method. Grow Plants Soil Water-Cult Method. [(accessed on 15 September 2020)];1938 Available online: https://www.cabdirect.org/cabdirect/abstract/19381900944.