Effect of Elevated Temperature on the Bond Strength of Prestressing Reinforcement in UHPC

. 2020 Nov 05 ; 13 (21) : . [epub] 20201105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33167553

Grantová podpora
17-22796S Grantová Agentura České Republiky

The study explores the effect of elevated temperatures on the bond strength between prestressing reinforcement and ultra-high performance concrete (UHPC). Laboratory investigations reveal that the changes in bond strength correspond well with the changes in compressive strength of UHPC and their correlation can be mathematically described. Exposition of specimens to temperatures up to 200 °C does not reduce bond strength as a negative effect of increasing temperature is outweighed by the positive effect of thermal increase on the reactivity of silica fume in UHPC mixture. Above 200 °C, bond strength significantly reduces; for instance, a decrease by about 70% is observed at 800 °C. The decreases in compressive and bond strengths for temperatures above 400 °C are related to the changes of phase composition of UHPC matrix (as revealed by X-ray powder diffraction) and the changes in microstructure including the increase of porosity (verified by mercury intrusion porosimetry and observation of confocal microscopy) and development cracks detected by scanning electron microscopy. Future research should investigate the effect of relaxation of prestressing reinforcement with increasing temperature on bond strength reduction by numerical modelling.

Zobrazit více v PubMed

Shi C., Wu Z., Xiao J., Wang D., Huang Z., Fang Z. A review on ultra high performance concrete: Part I. Raw materials and mixture design. Constr. Build. Mater. 2015;101:741–751. doi: 10.1016/j.conbuildmat.2015.10.088. DOI

Richard P., Cheyrezy M. Composition of reactive powder concretes. Cem. Concr. Res. 1995;25:1501–1511. doi: 10.1016/0008-8846(95)00144-2. DOI

Wang D., Shi C., Wu Z., Xiao J., Huang Z., Fang Z. A review on ultra high performance concrete: Part II. Hydratation, microstructure and properties. Constr. Build. Mater. 2015;96:368–377. doi: 10.1016/j.conbuildmat.2015.08.095. DOI

Tam C.M., Tam V.W.Y., Ng K.M. Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong. Constr. Build. Mater. 2012;26:79–89. doi: 10.1016/j.conbuildmat.2011.05.006. DOI

Reda M.M., Shrive N.G., Gillott J.E. Microstructural investigation of innovative UHPC. Cem. Concr. Res. 1999;29:323–329. doi: 10.1016/S0008-8846(98)00225-7. DOI

Vítek J.L., Coufal R., Čítek D. UHPC—Development and testing on structural elements. Proc. Eng. 2013;65:218–223. doi: 10.1016/j.proeng.2013.09.033. DOI

Lee N.K., Koh K.T., Park S.H., Ryu G.S. Microstructural investigation of calcium aluminate cement-based ultra-high performance cencrete (UHPC) exposed to high temperatures. Cem. Concr. Res. 2017;102:109–118. doi: 10.1016/j.cemconres.2017.09.004. DOI

Habert G., Arribe D., Dehove T., Espinasse L., Le Roy R. Reducing environmental impact by increasing the strength of concrete: Quantification of the improvement to concrete bridges. J. Clean. Prod. 2012;35:250–262. doi: 10.1016/j.jclepro.2012.05.028. DOI

Aïtcin P.C. High-Performance Concrete. Taylor & Francis/CRC Press; London, UK: 1998.

Xiong M.-X., Liew J.Y.R. Spalling behaviour and residual resistance of fibre reinforced Ultra-High performance concrete after exposure to high temperatures. Mater. Constr. 2015;65:e071.

Ma Q., Guo R., Zhao Z., Lin Z., He K. Mechanical properties of concrete at high temperature—A review. Constr. Build. Mater. 2015;93:371–383. doi: 10.1016/j.conbuildmat.2015.05.131. DOI

Ko J., Ryu D., Noguchi T. The spalling mechanism of high-strength concrete under fire. Mag. Concr. Res. 2011;63:357–370. doi: 10.1680/macr.10.00002. DOI

Sanchayan S., Foster S.J. High temperature behaviour of hybrid steel-PVA fibre reinforced reactive powder concrete. Mater. Struct. 2016;49:769–782. doi: 10.1617/s11527-015-0537-2. DOI

Huang H., Wang R., Gao X. Improvement effect of fiber alignment on resistance to elevated temperature of ultra-high performance concrete. Compos. B. 2019;177:107454. doi: 10.1016/j.compositesb.2019.107454. DOI

Liu M., Zhao Y., Xiao Y., Yu Z. Performance of cement pastes containing sewage sludge ash at elevated temperatures. Constr. Build. Mater. 2019;211:785–795. doi: 10.1016/j.conbuildmat.2019.03.290. DOI

European Committee for Standardization . EN 1992-1-1: Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules Andrules for Buildings. European Committee for Standardization; Brussels, Belgium: 2004.

Pokorný P., Kouřil M., Stoulil J., Bouška P., Simon P., Juránek P. Problems and normative evaluation of bond-strength tests for coated reinforcement and concrete. Mater. Tech. 2015;49:1580–2949. doi: 10.17222/mit.2014.227. DOI

Abbas S., Nehdi M.L., Saleem M.A. Ultra-high performance concrete: Mechanical performance, durability, sustainbility and implementation challenges. Int. J. Concr. Struct. Mater. 2016;10:271–295. doi: 10.1007/s40069-016-0157-4. DOI

Li Y., Tan K.H., Yang E.-H. Synerigistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature. Cem. Concr. Compos. 2019;96:174–181. doi: 10.1016/j.cemconcomp.2018.11.009. DOI

Ozawa M., Parajuli S.S., Uchida Y., Zhou B. Preventive effects of polypropylene and jute fibers on spalling of UHPC at high temperatures in combination with waste porous ceramic fine aggregate as an internal curing material. Constr. Build. Mater. 2019;206:219–225. doi: 10.1016/j.conbuildmat.2019.02.056. DOI

Ozawa M., Morimoto H. Effect of various fibers on high-temperature spalling in high- performance concrete. Constr. Build. Mater. 2014;71:83–92. doi: 10.1016/j.conbuildmat.2014.07.068. DOI

Zhang D., Tan K.H., Dasari A., Weng Y. Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete. Cem. Concr. Compos. 2020;109:103512. doi: 10.1016/j.cemconcomp.2020.103512. DOI

Zhang D., Dasari A., Tan K.H. On the mechanism of prevention of explosive spalling in ultra-high performance concrete with polymer fibers. Cem. Concr. Res. 2018;113:169–177. doi: 10.1016/j.cemconres.2018.08.012. DOI

Serrano R., Cobo A., Prieto M.I., González M.N. Analysis of fire resistance of concrete with polypropylene or steel fibers. Constr. Build. Mater. 2016;122:302–309. doi: 10.1016/j.conbuildmat.2016.06.055. DOI

Kim J., Lee G.P., Moon D.Y. Evaluation of mechanical properties of steel-fiber- reinforced concrete exposed to high temperatures by double-punch test. Constr. Build. Mater. 2015;79:182–191. doi: 10.1016/j.conbuildmat.2015.01.042. DOI

ČSN 73 1333—Zkoušení soudržnosti předpínací výztuže s betonem (Note: Currently Valid Standard in Czech Republic; Only in Czech) Czechoslovak state standard; Prague, Czech Republic: 1989.

RILEM RPC 6 Specification for the Test to Determine the Bond Properties of Prestressing Tendons. E & FN SPON; Paris, France: 1994.

ASTM E 119 Standard Test Methods for Fire Tests of Building Construction and Materials. ASTM International; West Conshohocken, PA, USA: 2007.

RILEM RC 6 Bond Test for Reinforcement Steel. 2: Pull-Out Test. E & FN SPON; France, Paris: 1983.

Phan L.T., Carino N.J. Review of mechanical properties of HSC at elevated temperature. ASCE J. Mater. Civ. Eng. 1998;10:58–64. doi: 10.1061/(ASCE)0899-1561(1998)10:1(58). DOI

Li M., Qian C., Sun W. Mechanical properties of high-strength concrete after fire. Cem. Concr. Res. 2004;34:1001–1005. doi: 10.1016/j.cemconres.2003.11.007. DOI

Lau A., Anson M. Effect of high temperature on high performance steel fibre reinforced concrete. Cem. Concr. Res. 2006;36:1698–1707. doi: 10.1016/j.cemconres.2006.03.024. DOI

Cheyrezy M., Maret V., Frouin L. Microstructural analysis of RPC (reactive powder concrete) Cem. Concr. Res. 1995;25:1491–1500. doi: 10.1016/0008-8846(95)00143-Z. DOI

Zanni H., Cheyrezy M., Maret V., Philippot S., Nieto P. Investigation of hydratation and pozzolanic reactive powder concrete (RPC) using 29Si NMR. Cem. Concr. Res. 1996;26:93–100. doi: 10.1016/0008-8846(95)00197-2. DOI

Li H., Liu G. Tensile properties of hybrid fiber reinforced reactive powder concrete after expose to elevated temperature. Int. J. Concr. Struct. Mat. 2016;10:29–37. doi: 10.1007/s40069-016-0125-z. DOI

Schmidt M., Fehling E., Geisenhanslüke C. Ultra high performance concrete (UHPC); Proceedings of the International Symposium on Ultra High Performance Concrete; Kassel, Germany. 13–15 September 2004.

Ye L. Ph.D. Thesis. Nanyang Technological University; Singapore: Jan, 2018. Material Properties Andexplosive Spalling of Ultra-High Performance Concrete in Fire.

Fabris N., Faleschini F., Pellegrino C. Bond modelling for the assessment of transmission length in prestressed-concrete members. Civ. Eng. 2020;1:75–92. doi: 10.3390/civileng1020006. DOI

Alkaysi M., El-Tawil S. Factors affecting bond development between Ultra High Performance Concrete (UHPC) and steel bar reinforcement. Constr. Build. Mater. 2017;144:412–422. doi: 10.1016/j.conbuildmat.2017.03.091. DOI

Ronanki V.S., Aaleti S., Valentim D.B. Experimental investigation of bond behaviour of mild steel reinforcement in UHPC. Eng. Struct. 2018;176:707–718. doi: 10.1016/j.engstruct.2018.09.031. DOI

Ka S.B., Han S.-J., Lee D.H., Choi S.-H., Oh Y.-H., Kim K.S. Bond strength of reinforcing bars considering failure mechanism. J. Eng. Fail. Anal. 2018;94:327–338. doi: 10.1016/j.engfailanal.2018.08.008. DOI

Pokorný P., Pernicová R., Tej P., Kolísko J. Changes of bond strength properties of hot-dip galvanized plain bars with cement paste after 1 year of curing. Constr. Build. Mater. 2019;226:920–931. doi: 10.1016/j.conbuildmat.2019.07.147. DOI

Prieto M., Tanner P., Andrade C. Multiple linear regression model for the assessment of bond strength in corroded and non-corroded steel bars in structural concrete. J. Mater. Struct. 2016;49:4749–4763. doi: 10.1617/s11527-016-0822-8. DOI

Martí-Vargas J.R., Serna P., Navarro-Gregori J., Bonet J.L. Effect of concrete composition on transmission length of prestressing strands. Constr. Build. Mater. 2012;27:350–356. doi: 10.1016/j.conbuildmat.2011.07.038. DOI

Martí-Vargas J.R., Arbeláez C.A., Serna-ros P., Navarro-Gregori J., Pallarés-Rubio L. Analytical model for transfer length prediction of 13 mm prestressing strand. Struct. Eng. 2007;26:211–229. doi: 10.12989/sem.2007.26.2.211. DOI

Mitchell D., Cook W.D., Khann A.A., Tham T. Influence of high strength concrete on transfer and development length of pretensioning strand. PCI J. 1993;23:52–66. doi: 10.15554/pcij.05011993.52.66. DOI

Bailey C.G., Ellobody E. Fire tests on bonded post-tensioned concrete slabs. Eng. Struct. 2009;31:686–696. doi: 10.1016/j.engstruct.2008.11.009. DOI

Karim M.R., Chowdhury F.I., Zabed H., Saidur M.R. Effect of elevated temperatures on compressive strength and microstructure of cement paste containing palm oil clinker powder. Constr. Build. Mater. 2018;183:376–383. doi: 10.1016/j.conbuildmat.2018.06.147. DOI

Heikal M., El-Didamony H., Sokkary T., Ahmed I. Behaviour of composite cement pastes containing microsilica and fly ash at elevated temperature. Constr. Build. Mater. 2013;38:1180–1190. doi: 10.1016/j.conbuildmat.2012.09.069. DOI

Haselbach L. Potential for carbon dioxide absorption in concrete. ASCE J. Mater. Civil Eng. 2009;135:465–472. doi: 10.1061/(ASCE)EE.1943-7870.0000004. DOI

Chang C.-F., Chen J.-W. The experimental investigation of concrete carbonation depth. Cem. Concr. Res. 2006;36:1760–1767. doi: 10.1016/j.cemconres.2004.07.025. DOI

Alarcon-Ruiz L., Platret G., Massieu E., Ehrlacher A. The use of thermal analysis in assessing the effect of temperature on cement paste. Cem. Concr. Res. 2005;35:609–613. doi: 10.1016/j.cemconres.2004.06.015. DOI

Kim K.Y., Yun S.T., Park K.P. Evaluation of pore structures and cracking in cement paste exposed to elevated temperatures by X-ray computed tomography. Cem. Concr. Res. 2013;50:34–40. doi: 10.1016/j.cemconres.2013.03.020. DOI

Esteves L.P. On the hydration of water-entrained cement-silica systems: Combined SEM, XRD and thermal analysis in cement pastes. Thermochim. Acta. 2011;518:27–35. doi: 10.1016/j.tca.2011.02.003. DOI

Yazdani A., Rezaie H.R., Ghassai H. Investigation of hydrothermal synthesis of wollastonite using silica and nano silica at different pressures. J. Ceram. Process. Res. 2010;11:348–353.

Biolzi L., Cattaneo S., Rosati G. Evaluating residual properties of thermally damaged concrete. Cem. Concr. Compos. 2008;30:907–916. doi: 10.1016/j.cemconcomp.2008.09.005. DOI

Chan S.Y.N., Luo X., Sun W. Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete. Constr. Build. Mater. 2000;14:261–266. doi: 10.1016/S0950-0618(00)00031-3. DOI

Poon C.-S., Azhar S., Anson M., Wong Y.-L. Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. Cem. Concr. Res. 2001;31:1291–1300. doi: 10.1016/S0008-8846(01)00580-4. DOI

Li Y., Zhang Y., Yang E.-H., Tan K.H. Effects of geometry and fraction of polypropylene fibers on permeability of ultra-high performance concrete after heat exposure. Cem. Concr. Res. 2019;116:168–178. doi: 10.1016/j.cemconres.2018.11.009. DOI

Li Y., Tan K.H., Yang E.-H. Influence of aggregate size and inclusion of polypropylene and steel fibers on the hot permeability of ultra-high performance concrete (UHPC) at elevated temperature. Constr. Build. Mater. 2018;169:629–637. doi: 10.1016/j.conbuildmat.2018.01.105. DOI

Li W., Huang Z., Hu G., Duan W.H., Shah S.P. Early-age shrinkage development of ultra-high-perfromance concrete under heat curing treatment. Constr. Build. Mater. 2017;131:767–774. doi: 10.1016/j.conbuildmat.2016.11.024. DOI

Yu R., Spiesz P., Brouwers H.J.H. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cem. Concr. Compos. 2015;55:383–394. doi: 10.1016/j.cemconcomp.2014.09.024. DOI

Kang S.-H., Lee J.-H., Hong S.-G., Moon J. Imcrostructural investigation of heat treated Ultra-High Performance Concrete for optimum production. Materials. 2017;10:1106. doi: 10.3390/ma10091106. PubMed DOI PMC

Luo X., Sun W., Chan Y.N. Residual compressive strength and microstructure of high performance concrete after exposure to high temperature. Mat. Struct. 2000;33:294–298. doi: 10.1007/BF02479699. DOI

Chan S.Y.N., Peng G.-F., Chan J.K.W. Comparison between high strength concrete and normal strength concrete subjected to high temperature. Mat. Struct. 1996;29:616–619. doi: 10.1007/BF02485969. DOI

Ulm F.J., Acker P., Lévy M. The “chunnel“ fire. II: Analysis of concrete damage. J. Eng. Mech. 1999;125:283–289. doi: 10.1061/(ASCE)0733-9399(1999)125:3(283). DOI

Kalifa P., Chéne G., Gallé C.H. High-temperature behaviourof HPC with polypropylene fibers from spalling to microstructure. Cem. Concr. Res. 2001;31:1487–1499. doi: 10.1016/S0008-8846(01)00596-8. DOI

Smarzewski P. Study of toughness and macro/micro-crack development of fibre- reinforced Ultra-High Performance Concrete after exposure to elevated temperature. Materials. 2019;12:1210. doi: 10.3390/ma12081210. PubMed DOI PMC

Fu Y.F., Wong Y.L., Tang C.A., Poon C.S. Thermal induced stress and associated cracking in cement-based composite at elevated temperatures-Part I: Thermal cracking around single inclusion. Cem. Concr. Compos. 2004;26:99–111. doi: 10.1016/S0958-9465(03)00086-6. DOI

Fu Y.F., Wong Y.L., Tang C.A., Poon C.S. Thermal induced stress and associated cracking in cement-based composite at elevated temperatures-Part II: Thermal cracking around multiple inclusions. Cem. Concr. Compos. 2004;26:113–126. doi: 10.1016/S0958-9465(03)00087-8. DOI

Fu Y.F., Wong Y.L., Poon C.S., Tang C.A., Lin P. Experimental micro/macro crack development and stress-strain relations of cement-based composite materilas at elevated temperatures. Cem. Concr. Res. 2004;34:789–797. doi: 10.1016/j.cemconres.2003.08.029. DOI

Missemer L., Ouedraogo E., Malecot Y., Clergue C., Rogat D. Fire spalling of ultra- high performance concrete: From a global analysis to microstructure investigations. Cem. Concr. Res. 2019;115:207–219. doi: 10.1016/j.cemconres.2018.10.005. DOI

Ahmad S., Rasul M., Adekunle S.K., Al-Dulaijan S.U., Maslehuddin M., Ali S.I. Mechanical properties of steel fiber- reinforced UHPC mixtures exposed to elevated temperature: Effects of exposure duration and fiber content. Compos. B. 2019;168:291–301. doi: 10.1016/j.compositesb.2018.12.083. DOI

Peng G.F., Niu X.J., Shang Y.J., Zhang D.P., Chen X.W., Ding H. Combined curing as a novel approach to improve resistance of ultra-high performance concrete to explosive spalling under high temperature and its mechanical properties. Cem. Concr. Res. 2018;109:147–158. doi: 10.1016/j.cemconres.2018.04.011. DOI

Myers R.J., L’Hôpital E., Provis J.L., Lothenbach B. Effect of temperature and aluminium on calcium (alumino) silicate hydrate chemistry under equilibrium conditions. Cem. Concr. Res. 2015;68:83–93. doi: 10.1016/j.cemconres.2014.10.015. DOI

Qin L., Gao X.J., Chen T.F. Influence of mineral admixtures on carbonation curing cement paste. Constr. Build. Mater. 2019;212:653–662. doi: 10.1016/j.conbuildmat.2019.04.033. DOI

Shao Y., Rostami V., He Z., Boyd A.J. Accelerated carbonation of Portland limestone cement. ASCE J. Mater. Civil Eng. 2014;26:117–124. doi: 10.1061/(ASCE)MT.1943-5533.0000773. DOI

Varona F.B., Baeza F.J., Bru D., Lvorra S. Influence of high temperature on the mechanical properties of hybrid fiber reinforcement normal and high strength concrete. Constr. Build. Mater. 2018;159:73–82. doi: 10.1016/j.conbuildmat.2017.10.129. DOI

Presetyo A., Reynaud F., Warlimont H. Omega phase in quenched β brass and its relation to elastic anomalies. Acta Met. 1976;24:1009–1016. doi: 10.1016/0001-6160(76)90131-0. DOI

Haddad R.H., Al-Saleh R.J., Al-Akhras N.M. Effect of elevated temperature on bond between steel reinforcement and fiber reinforced concrete. J. Fire Saf. 2008;43:334–343. doi: 10.1016/j.firesaf.2007.11.002. DOI

Li L., Zhang R.B., Jin L., Du X.L., Wu J., Duan W.H. Experimental study on dynamic compressive behavior of steel fiber reinforced concrete at elevated temperatures. Constr. Build. Mater. 2019;210:673–684. doi: 10.1016/j.conbuildmat.2019.03.138. DOI

Yermak N., Pliya P., Beaucour A.-L., Simon A., Noumowé A. Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: Spalling, transfer and mechanical properties. Constr. Build. Mater. 2017;132:240–250. doi: 10.1016/j.conbuildmat.2016.11.120. DOI

Tai Y.S., Pan H.H., Kung Y.N. Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800 °C. Nucl. Eng. Des. 2011;241:2416–2424. doi: 10.1016/j.nucengdes.2011.04.008. DOI

Caverzan A., Cadoin E., di Prisco M. Dynamic tensile behaviour of high performance fibre reinforced cementitious composites after high temperature exposure. Mech. Mat. 2013;59:87–109. doi: 10.1016/j.mechmat.2012.12.006. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...