Flexibilization of Biorefineries: Tuning Lignin Hydrogenation by Hydrogen Partial Pressure

. 2021 Jan 07 ; 14 (1) : 373-378. [epub] 20201111

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33174387

Grantová podpora
604307 European Commission
CZ.02.1.01/0.0/0.0/15_003/0000417 Charles University Center of Advanced Materials

The present study describes an interesting and practical catalytic system that allows flexible conversion of lignin into aromatic or aliphatic hydrocarbons, depending on the hydrogen partial pressure. A combination of experiment and theory shows that the product distribution between aromatics and aliphatics can be simply tuned by controlling the availability of hydrogen on the catalyst surface. Noticeably, these pathways lead to almost complete oxygen removal from lignin biomass, yielding high-quality hydrocarbons. Thus, hydrogen-lignin co-refining by using this catalytic system provides high flexibility in hydrogen storage/consumption towards meeting different regional and temporal demands.

Zobrazit více v PubMed

Centi G., Quadrelli E. A., Perathoner S., Energy Environ. Sci. 2013, 6, 1711–1731.

Lanzafame P., Centi G., Perathoner S., Chem. Soc. Rev. 2014, 43, 7562–7580. PubMed

Büchele R., Henzelmann T., Hoff P., Engel M., Umwelttechnik-Atlas für Deutschland, Vahlen, München, 2009.

Chheda J. N., Huber G. W., Dumesic J. A., Angew. Chem. Int. Ed. 2007, 46, 7164–7183; PubMed

Angew. Chem. 2007, 119, 7298–7318.

Ferrini P., Rinaldi R., Angew. Chem. Int. Ed. 2014, 53, 8634–8639; PubMed

Angew. Chem. 2014, 126, 8778–8783.

Huber G. W., Corma A., Angew. Chem. Int. Ed. 2007, 46, 7184–7201; PubMed

Angew. Chem. 2007, 119, 7320–7338.

Huber G. W., Shabaker J. W., Dumesic J. A., Science 2003, 300, 2075–2077. PubMed

Ragauskas A. J., Beckham G. T., Biddy M. J., Chandra R., Chen F., Davis M. F., Davison B. H., Dixon R. A., Gilna P., Keller M., Langan P., Naskar A. K., Saddler J. N., Tschaplinski T. J., Tuskan G. A., Wyman C. E., Science 2014, 344, 1246843. PubMed

Renders T., Van den Bosch S., Koelewijn S.-F., Schutyser W., Sels B., Energy Environ. Sci. 2017, 10, 1551–1557.

Vispute T. P., Zhang H., Sanna A., Xiao R., Huber G. W., Science 2010, 330, 1222–1227. PubMed

Schutyser W., Renders T., Van den Bosch S., Koelewijn S.-F., Beckham G., Sels B., Chem. Soc. Rev. 2018, 47, 852–908. PubMed

Anderson E. M., Stone M. L., Katahira R., Reed M., Beckham G. T., Román-Leshkov Y., Joule 2017, 1, 613–622.

Shuai L., Amiri M. T., Questell-Santiago Y. M., Héroguel F., Li Y., Kim H., Meilan R., Chapple C., Ralph J., Luterbacher J. S., Science 2016, 354, 329–333. PubMed

Toledano A., Serrano L., Labidi J., J. Chem. Technol. Biotechnol. 2012, 87, 1593–1599.

Zhang J., Asakura H., van Rijn J., Yang J., Duchesne P., Zhang B., Chen X., Zhang P., Saeys M., Yan N., Green Chem. 2014, 16, 2432–2437.

Leitner W., Klankermayer J., Pischinger S., Pitsch H., Kohse-Höinghaus K., Angew. Chem. Int. Ed. 2017, 56, 5412–5452; PubMed

Angew. Chem. 2017, 129, 5500–5544.

Stöcker M., Angew. Chem. Int. Ed. 2008, 47, 9200–9211; PubMed

Angew. Chem. 2008, 120, 9340–9351.

Rinaldi R., Joule 2017, 1, 427–428.

Jan O., Marchand R., Anjos L. C., Seufitelli G. V., Nikolla E., Resende F. L., Energy Fuels 2015, 29, 1793–1800.

Sutton A. D., Waldie F. D., Wu R., Schlaf M., Silks L. A. III, Gordon J. C., Nat. Chem. 2013, 5, 428–432. PubMed

Liu G., Robertson A. W., Li M. M.-J., Kuo W. C., Darby M. T., Muhieddine M. H., Lin Y.-C., Suenaga K., Stamatakis M., Warner J. H., Nat. Chem. 2017, 9, 810–816. PubMed

Liao Y., Koelewijn S.-F., Van den Bossche G., Van Aelst J., Van den Bosch S., Renders T., Navare K., Nicolaï T., Van Aelst K., Maesen M. J. S., Science 2020, 367, 1385–1390. PubMed

Meng Q., Yan J., Liu H., Chen C., Li S., Shen X., Song J., Zheng L., Han B., Sci. Adv. 2019, 5, eaax6839. PubMed PMC

https://www.acwapower.com/news/acwa-power-wins-the-first-ever-utility-scale-renewable-energy-project-in-saudi-arabia/.

G. Saur, National Renewable Energy Laboratory (NREL), Golden, CO., 2008, https://www.osti.gov/biblio/944892.

Schiebahn S., Grube T., Robinius M., Tietze V., Kumar B., Stolten D., Int. J. Hydrogen Energy 2015, 40, 4285–4294.

Tremel A., Wasserscheid P., Baldauf M., Hammer T., Int. J. Hydrogen Energy 2015, 40, 11457–11464.

Zhu Q.-L., Xu Q. J. E., E. Science, 2015, 8, 478–512.

R. B. Gupta, Hydrogen Fuel: Production, Transport, and Storage, CRC Press, Boca Raton, 2008.

Hydrogen: Economics and its role in biorefining, F. Schüth, 2014.

Rinaldi R., Catalytic Hydrogenation for Biomass Valorization, Royal Society of Chemistry, Cambridge, 2014.

Yadav M., Xu Q., Energy Environ. Sci. 2012, 5, 9698–9725.

Wang H., Male J., Wang Y., ACS Catal. 2013, 3, 1047–1070.

Romero Y., Richard F., Brunet S., Appl. Catal. B 2010, 98, 213–223.

Shi W., Gao Y., Song S., Zhao Y., Ind. Eng. Chem. Res. 2014, 53, 11557–11565.

Wang H., Ruan H., Pei H., Wang H., Chen X., Tucker M. P., Cort J. R., Yang B., Green Chem. 2015, 17, 5131–5135.

Xia Q., Chen Z., Shao Y., Gong X., Wang H., Liu X., Parker S. F., Han X., Yang S., Wang Y., Nat. Commun. 2016, 7, 11162. PubMed PMC

Zhao C., Kou Y., Lemonidou A. A., Li X., Lercher J. A., Angew. Chem. Int. Ed. 2009, 48, 3987–3990; PubMed

Angew. Chem. 2009, 121, 4047–4050.

Wang X., Rinaldi R., Angew. Chem. Int. Ed. 2013, 52, 11499–11503; PubMed

Angew. Chem. 2013, 125, 11713–11717.

Luo Z. C., Wang Y. M., He M. Y., Zhao C., Green Chem. 2016, 18, 433–441.

Boullosa-Eiras S., Lødeng R., Bergem H., Stöcker M., Hannevold L., Blekkan E. A., Catal. Today 2014, 223, 44–53.

Nelson R. C., Baek B., Ruiz P., Goundie B., Brooks A., Wheeler M. C., Frederick B. G., Grabow L. C., Austin R. N., ACS Catal. 2015, 5, 6509–6523.

Zhang X. S., Lei H. W., Zhu L., Wu J., Chen S. L., Green Chem. 2015, 17, 4736–4747.

Bond J. Q., Upadhye A. A., Olcay H., Tompsett G. A., Jae J., Xing R., Alonso D. M., Wang D., Zhang T., Kumar R., Foster A., Sen S. M., Maravelias C. T., Malina R., Barrett S. R. H., Lobo R., Wyman C. E., Dumesic J. A., Huber G. W., Energy Environ. Sci. 2014, 7, 1500–1523.

Song W., Liu Y., Baráth E., Zhao C., Lercher J. A., Green Chem. 2015, 17, 1204–1218.

Lu Y., Ma B., Zhao C., Chem. Commun. 2018, 54, 9829–9832. PubMed

Cao Z., Dierks M., Clough M. T., Daltro de Castro I. B., Rinaldi R., Joule 2018, 2, 1118–1133. PubMed PMC

Zhao H., Oyama S. T., Freund H.-J., Włodarczyk R., Sierka M., Appl. Catal. B 2015, 164, 204–216.

Lee Y. K., Oyama S. T., J. Catal. 2006, 239, 376–389.

He J., Morales-García Á., Bludský O., Nachtigall P., CrystEngComm 2016, 18, 3808–3818.

Lee Y.-K., Oyama S. T., J. Catal. 2006, 239, 376–389.

Kanama D., Oyama S. T., Otani S., Cox D. F., Surf. Sci. 2004, 552, 8–16.

Wang X., Rinaldi R., Energy Environ. Sci. 2012, 5, 8244–8260.

Wang X., Rinaldi R., Angew. Chem. Int. Ed. 2013, 52, 11499–11503; PubMed

Angew. Chem. 2013, 125, 11713–11717.

Pandey M. P., Kim C. S., Chem. Eng. Technol. 2011, 34, 29–41.

Britt P. F., A. Buchanan  III , Thomas K. B., Lee S. K. J. Anal. Appl. Pyrolysis, 1995, 33, 1–19.

Fan L. L., Chen P., Zhang Y. N., Liu S. Y., Liu Y. H., Wang Y. P., Dai L. L., Ruan R., Bioresour. Technol. 2017, 225, 199–205. PubMed

Gaspar A., Zellermann E., Lababidi S., Reece J., Schrader W., Anal. Chem. 2012, 84, 5257–5267. PubMed

Vetere A., Schrader W., ChemistrySelect 2017, 2, 849–853.

Panda S. K., Andersson J. T., Schrader W., Angew. Chem. Int. Ed. 2009, 48, 1788–1791; PubMed

Angew. Chem. 2009, 121, 1820–1823.

Bristow A. W., Mass Spectrometry Rev. 2006, 25, 99–111. PubMed

Zakzeski J., Bruijnincx P. C. A., Jongerius A. L., Weckhuysen B. M., Chem. Rev. 2010, 110, 3552–3599. PubMed

https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...