Flexibilization of Biorefineries: Tuning Lignin Hydrogenation by Hydrogen Partial Pressure
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
604307
European Commission
CZ.02.1.01/0.0/0.0/15_003/0000417
Charles University Center of Advanced Materials
PubMed
33174387
PubMed Central
PMC7839488
DOI
10.1002/cssc.202002248
Knihovny.cz E-zdroje
- Klíčová slova
- biomass, hydrogen, lignin, renewable energy, waste valorization,
- Publikační typ
- časopisecké články MeSH
The present study describes an interesting and practical catalytic system that allows flexible conversion of lignin into aromatic or aliphatic hydrocarbons, depending on the hydrogen partial pressure. A combination of experiment and theory shows that the product distribution between aromatics and aliphatics can be simply tuned by controlling the availability of hydrogen on the catalyst surface. Noticeably, these pathways lead to almost complete oxygen removal from lignin biomass, yielding high-quality hydrocarbons. Thus, hydrogen-lignin co-refining by using this catalytic system provides high flexibility in hydrogen storage/consumption towards meeting different regional and temporal demands.
Zobrazit více v PubMed
Centi G., Quadrelli E. A., Perathoner S., Energy Environ. Sci. 2013, 6, 1711–1731.
Lanzafame P., Centi G., Perathoner S., Chem. Soc. Rev. 2014, 43, 7562–7580. PubMed
Büchele R., Henzelmann T., Hoff P., Engel M., Umwelttechnik-Atlas für Deutschland, Vahlen, München, 2009.
Chheda J. N., Huber G. W., Dumesic J. A., Angew. Chem. Int. Ed. 2007, 46, 7164–7183; PubMed
Angew. Chem. 2007, 119, 7298–7318.
Ferrini P., Rinaldi R., Angew. Chem. Int. Ed. 2014, 53, 8634–8639; PubMed
Angew. Chem. 2014, 126, 8778–8783.
Huber G. W., Corma A., Angew. Chem. Int. Ed. 2007, 46, 7184–7201; PubMed
Angew. Chem. 2007, 119, 7320–7338.
Huber G. W., Shabaker J. W., Dumesic J. A., Science 2003, 300, 2075–2077. PubMed
Ragauskas A. J., Beckham G. T., Biddy M. J., Chandra R., Chen F., Davis M. F., Davison B. H., Dixon R. A., Gilna P., Keller M., Langan P., Naskar A. K., Saddler J. N., Tschaplinski T. J., Tuskan G. A., Wyman C. E., Science 2014, 344, 1246843. PubMed
Renders T., Van den Bosch S., Koelewijn S.-F., Schutyser W., Sels B., Energy Environ. Sci. 2017, 10, 1551–1557.
Vispute T. P., Zhang H., Sanna A., Xiao R., Huber G. W., Science 2010, 330, 1222–1227. PubMed
Schutyser W., Renders T., Van den Bosch S., Koelewijn S.-F., Beckham G., Sels B., Chem. Soc. Rev. 2018, 47, 852–908. PubMed
Anderson E. M., Stone M. L., Katahira R., Reed M., Beckham G. T., Román-Leshkov Y., Joule 2017, 1, 613–622.
Shuai L., Amiri M. T., Questell-Santiago Y. M., Héroguel F., Li Y., Kim H., Meilan R., Chapple C., Ralph J., Luterbacher J. S., Science 2016, 354, 329–333. PubMed
Toledano A., Serrano L., Labidi J., J. Chem. Technol. Biotechnol. 2012, 87, 1593–1599.
Zhang J., Asakura H., van Rijn J., Yang J., Duchesne P., Zhang B., Chen X., Zhang P., Saeys M., Yan N., Green Chem. 2014, 16, 2432–2437.
Leitner W., Klankermayer J., Pischinger S., Pitsch H., Kohse-Höinghaus K., Angew. Chem. Int. Ed. 2017, 56, 5412–5452; PubMed
Angew. Chem. 2017, 129, 5500–5544.
Stöcker M., Angew. Chem. Int. Ed. 2008, 47, 9200–9211; PubMed
Angew. Chem. 2008, 120, 9340–9351.
Rinaldi R., Joule 2017, 1, 427–428.
Jan O., Marchand R., Anjos L. C., Seufitelli G. V., Nikolla E., Resende F. L., Energy Fuels 2015, 29, 1793–1800.
Sutton A. D., Waldie F. D., Wu R., Schlaf M., Silks L. A. III, Gordon J. C., Nat. Chem. 2013, 5, 428–432. PubMed
Liu G., Robertson A. W., Li M. M.-J., Kuo W. C., Darby M. T., Muhieddine M. H., Lin Y.-C., Suenaga K., Stamatakis M., Warner J. H., Nat. Chem. 2017, 9, 810–816. PubMed
Liao Y., Koelewijn S.-F., Van den Bossche G., Van Aelst J., Van den Bosch S., Renders T., Navare K., Nicolaï T., Van Aelst K., Maesen M. J. S., Science 2020, 367, 1385–1390. PubMed
Meng Q., Yan J., Liu H., Chen C., Li S., Shen X., Song J., Zheng L., Han B., Sci. Adv. 2019, 5, eaax6839. PubMed PMC
https://www.acwapower.com/news/acwa-power-wins-the-first-ever-utility-scale-renewable-energy-project-in-saudi-arabia/.
G. Saur, National Renewable Energy Laboratory (NREL), Golden, CO., 2008, https://www.osti.gov/biblio/944892.
Schiebahn S., Grube T., Robinius M., Tietze V., Kumar B., Stolten D., Int. J. Hydrogen Energy 2015, 40, 4285–4294.
Tremel A., Wasserscheid P., Baldauf M., Hammer T., Int. J. Hydrogen Energy 2015, 40, 11457–11464.
Zhu Q.-L., Xu Q. J. E., E. Science, 2015, 8, 478–512.
R. B. Gupta, Hydrogen Fuel: Production, Transport, and Storage, CRC Press, Boca Raton, 2008.
Hydrogen: Economics and its role in biorefining, F. Schüth, 2014.
Rinaldi R., Catalytic Hydrogenation for Biomass Valorization, Royal Society of Chemistry, Cambridge, 2014.
Yadav M., Xu Q., Energy Environ. Sci. 2012, 5, 9698–9725.
Wang H., Male J., Wang Y., ACS Catal. 2013, 3, 1047–1070.
Romero Y., Richard F., Brunet S., Appl. Catal. B 2010, 98, 213–223.
Shi W., Gao Y., Song S., Zhao Y., Ind. Eng. Chem. Res. 2014, 53, 11557–11565.
Wang H., Ruan H., Pei H., Wang H., Chen X., Tucker M. P., Cort J. R., Yang B., Green Chem. 2015, 17, 5131–5135.
Xia Q., Chen Z., Shao Y., Gong X., Wang H., Liu X., Parker S. F., Han X., Yang S., Wang Y., Nat. Commun. 2016, 7, 11162. PubMed PMC
Zhao C., Kou Y., Lemonidou A. A., Li X., Lercher J. A., Angew. Chem. Int. Ed. 2009, 48, 3987–3990; PubMed
Angew. Chem. 2009, 121, 4047–4050.
Wang X., Rinaldi R., Angew. Chem. Int. Ed. 2013, 52, 11499–11503; PubMed
Angew. Chem. 2013, 125, 11713–11717.
Luo Z. C., Wang Y. M., He M. Y., Zhao C., Green Chem. 2016, 18, 433–441.
Boullosa-Eiras S., Lødeng R., Bergem H., Stöcker M., Hannevold L., Blekkan E. A., Catal. Today 2014, 223, 44–53.
Nelson R. C., Baek B., Ruiz P., Goundie B., Brooks A., Wheeler M. C., Frederick B. G., Grabow L. C., Austin R. N., ACS Catal. 2015, 5, 6509–6523.
Zhang X. S., Lei H. W., Zhu L., Wu J., Chen S. L., Green Chem. 2015, 17, 4736–4747.
Bond J. Q., Upadhye A. A., Olcay H., Tompsett G. A., Jae J., Xing R., Alonso D. M., Wang D., Zhang T., Kumar R., Foster A., Sen S. M., Maravelias C. T., Malina R., Barrett S. R. H., Lobo R., Wyman C. E., Dumesic J. A., Huber G. W., Energy Environ. Sci. 2014, 7, 1500–1523.
Song W., Liu Y., Baráth E., Zhao C., Lercher J. A., Green Chem. 2015, 17, 1204–1218.
Lu Y., Ma B., Zhao C., Chem. Commun. 2018, 54, 9829–9832. PubMed
Cao Z., Dierks M., Clough M. T., Daltro de Castro I. B., Rinaldi R., Joule 2018, 2, 1118–1133. PubMed PMC
Zhao H., Oyama S. T., Freund H.-J., Włodarczyk R., Sierka M., Appl. Catal. B 2015, 164, 204–216.
Lee Y. K., Oyama S. T., J. Catal. 2006, 239, 376–389.
He J., Morales-García Á., Bludský O., Nachtigall P., CrystEngComm 2016, 18, 3808–3818.
Lee Y.-K., Oyama S. T., J. Catal. 2006, 239, 376–389.
Kanama D., Oyama S. T., Otani S., Cox D. F., Surf. Sci. 2004, 552, 8–16.
Wang X., Rinaldi R., Energy Environ. Sci. 2012, 5, 8244–8260.
Wang X., Rinaldi R., Angew. Chem. Int. Ed. 2013, 52, 11499–11503; PubMed
Angew. Chem. 2013, 125, 11713–11717.
Pandey M. P., Kim C. S., Chem. Eng. Technol. 2011, 34, 29–41.
Britt P. F., A. Buchanan III , Thomas K. B., Lee S. K. J. Anal. Appl. Pyrolysis, 1995, 33, 1–19.
Fan L. L., Chen P., Zhang Y. N., Liu S. Y., Liu Y. H., Wang Y. P., Dai L. L., Ruan R., Bioresour. Technol. 2017, 225, 199–205. PubMed
Gaspar A., Zellermann E., Lababidi S., Reece J., Schrader W., Anal. Chem. 2012, 84, 5257–5267. PubMed
Vetere A., Schrader W., ChemistrySelect 2017, 2, 849–853.
Panda S. K., Andersson J. T., Schrader W., Angew. Chem. Int. Ed. 2009, 48, 1788–1791; PubMed
Angew. Chem. 2009, 121, 1820–1823.
Bristow A. W., Mass Spectrometry Rev. 2006, 25, 99–111. PubMed
Zakzeski J., Bruijnincx P. C. A., Jongerius A. L., Weckhuysen B. M., Chem. Rev. 2010, 110, 3552–3599. PubMed
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF.