A Qualitative Market Analysis Applied to Mini-FLOTAC and Fill-FLOTAC for Diagnosis of Helminth Infections in Ruminants

. 2020 ; 7 () : 580649. [epub] 20201022

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33195595

Helminth infections, mainly by gastrointestinal nematodes (GIN), are one of the main concerns for animal health, welfare and productivity in grazing ruminant livestock worldwide. The use of a sensitive, precise, accurate, low-cost, and easy-to-perform copromicroscopic technique is of pivotal importance to perform reliable fecal egg count (FEC) and fecal egg count reduction test (FECRT), in order to determine the need of anthelmintic treatment, but also anthelmintic efficacy or resistance. This approach is fundamental to a correct and efficient control of GIN. Unfortunately, in worldwide ruminant farm practice, repeated anthelmintic treatments are carried out, without prior diagnosis of infection, contributing to the spread of Anthelmintic Resistance (AR). Tackling this phenomenon, improving mainly the GIN diagnosis and AR status in farm animals, is a priority of the European COST Action "COMBAR-COMBatting Anthelmintic Resistance in Ruminants" and of the STAR-IDAZ International Research Consortium on Animal Health. One of the specific objectives of the COMBAR Working Group 1 (WG1) is to conduct an European market analysis of new diagnostics and develop a business plan for commercial test introduction, leveraging technical know-how of participants. Since the Mini-FLOTAC in combination with the Fill-FLOTAC may be considered a good candidate for a standardized FEC and FECRT in the laboratory, as well as directly in the field, the aim of this study was to conduct SWOT (Strength-Weaknesses-Opportunities-Threats) and PESTEL (Political, Economic, Social, Technological, Environmental, and Legal) analyses of these tools in 20 European countries involved in the COMBAR WG1, in order to identify the opportunities, barriers, and challenges that might affect the Mini-FLOTAC and Fill-FLOTAC commercialization in Europe.

Ci2 Polytechnic Institute of Tomar Tomar Portugal

CISAS Centre for Research and Development in Agrifood Systems and Sustainability Escola Superior Agrária Instituto Politécnico de Viana do Castelo Rua Escola Industrial e Comercial de Nun'Àlvares Viana do Castelo Portugal

Department of Biomedical Sciences and Veterinary Public Health Section for Parasitology Swedish University of Agricultural Sciences Uppsala Sweden

Department of Veterinary Medicine and Animal Production University of Naples Federico 2 Naples Italy

Department of Veterinary Medicine Faculty of Agriculture University of Novi Sad Novi Sad Serbia

Division of Veterinary Epidemiology and Economics Institute of Veterinary Medicine Warsaw University of Life Sciences Warsaw Poland

EpiUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal

Faculty of Agrobiology Food and Natural Resources Czech University of Life Sciences Prague Prague Czechia

Faculty of Veterinary Medicine Spiru Haret University Bucharest Romania

Faculty of Veterinary Medicine St Cyril and Methodius University Skopje North Macedonia

INRA Oniris BIOEPAR Nantes France

Institute for Parasitology and Tropical Veterinary Medicine Freie Universitaet Berlin Berlin Germany

Institute of Global Food Security Queen's University Belfast Belfast United Kingdom

Institute of Parasitology of the Slovak Academy of Sciences Košice Slovakia

Institute of Parasitology University of Zurich Zurich Switzerland

Institute of Parasitology Vetmeduni Vienna Vienna Austria

Institutes of Agricultural Research and Educational Farm Research Institute of Karcag University of Debrecen Debrecen Hungary

Instituto de Ganadería de Montaña CSIC Universidad de León León Spain

Kreavet Kruibeke Belgium

Laboratory for Parasitology Faculty of Veterinary Medicine Ghent University Merelbeke Belgium

Lag Agro Lider Prilep North Macedonia

Lithuanian University of Health Sciences Kaunas Lithuania

School of Veterinary Medicine University College Dublin Dublin Ireland

Veterinary Research Institute HAO DEMETER Thessaloniki Greece

Zobrazit více v PubMed

Charlier J, Hoglund J, Morgan E, Geldhof P, Vercruysse J, Claerebout E. Biology and epidemiology of gastrointestinal nematodes in Cattle. Vet Clin North Am Food Anim Pract. (2020) 36:1–15. 10.1016/j.cvfa.2019.11.001 PubMed DOI

Charlier J, Rinaldi L, Musella V, Ploeger HW, Chartier C, Vineer H, et al. . Initial assessment of the burden of parasitic helminth infections to the ruminant livestock industry in Europe. Prev Vet Med. (2020) 182:105103. 10.1016/j.prevetmed.2020.105103 PubMed DOI

Taylor MA, Learmount J, Lunn E, Morgan C, Craig BH. Multiple resistance to anthelmintics in sheep nematodes and comparison of methods used for their detection. Small Rum Res. (2009) 86:67–70. 10.1016/j.smallrumres.2009.09.020 DOI

Kaplan RM, Vidyashankar AN. An inconvenient truth: global worming and anthelmintic resistance. Vet Parasitol. (2012) 186:70–8. 10.1016/j.vetpar.2011.11.048 PubMed DOI

Rose H, Rinaldi L, Bosco A, Mavrot F, de Waal T, Skuce P, et al. . Widespread anthelmintic resistance in European farmed ruminants: a systematic review. Vet Rec. (2015) 176:546. 10.1136/vr.102982 PubMed DOI

Sangster NC, Cowling A, Woodgate RG. Ten events that defined anthelmintic resistance research. Trends Parasitol. (2018) 34:553–63. 10.1016/j.pt.2018.05.001 PubMed DOI

Kaplan RM. Biology, epidemiology, diagnosis, and management of anthelmintic resistance in gastrointestinal nematodes of livestock. Vet Clin North Am Food Anim Pract. (2020) 36:17–30. 10.1016/j.cvfa.2019.12.001 PubMed DOI

Cringoli G, Maurelli MP, Levecke B, Bosco A, Vercruysse J, Utzinger J, et al. . The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals. Nat Protoc. (2017) 12:1723–32. 10.1038/nprot.2017.067 PubMed DOI

Rinaldi L, Levecke B, Bosco A, Ianniello D, Pepe P, Charlier J, et al. . Comparison of individual and pooled faecal samples in sheep for the assessment of gastrointestinal strongyle infection intensity and anthelmintic drug efficacy using McMaster and Mini-FLOTAC. Vet Parasitol. (2014) 205:216–23. 10.1016/j.vetpar.2014.06.011 PubMed DOI

Godber OF, Phythian CJ, Bosco A, Ianniello D, Coles G, Rinaldi L, et al. . A comparison of the FECPAK and Mini-FLOTAC faecal egg counting techniques. Vet Parasitol. (2015) 207:342–5. 10.1016/j.vetpar.2014.12.029 PubMed DOI

Kenyon F, Rinaldi L, McBeanm D, Pepe P, Bosco A, Melville L, et al. Pooling sheep faecal samples for the assessment of anthelmintic drug efficacy using McMaster and Mini-FLOTAC in gastrointestinal strongyle and Nematodirus infection. Vet Parasitol. (2016) 225:53–60. 10.1016/j.vetpar.2016.03.022 PubMed DOI

George MM, Paras KL, Howell SB, Kaplan RM. Utilization of composite fecal samples for detection of anthelmintic resistance in gastrointestinal nematodes of cattle. Vet Parasitol. (2017) 240:24–9. 10.1016/j.vetpar.2017.04.024 PubMed DOI

Dias de Castro LL, Abrahao CLH, Buzatti A, Molento MB, Bastianetto E, Rodrigues DS, et al. . Comparison of McMaster and Mini-FLOTAC fecal egg counting techniques in cattle and horses. Vet Parasitol Reg Stud Rep. (2017) 10:132–5. 10.1016/j.vprsr.2017.10.003 PubMed DOI

Bosco A, Maurelli MP, Ianniello D, Morgoglione ME, Amadesi A, Coles GC, et al. . The recovery of added nematode eggs from horse and sheep faeces by three methods. BMC Vet Res. (2018) 14:7. 10.1186/s12917-017-1326-7 PubMed DOI PMC

Paras KL, George MM, Vidyashankar AN, Kaplan RM. Comparison of fecal egg counting methods in four livestock species. Vet Parasitol. (2018) 257:21–7. 10.1016/j.vetpar.2018.05.015 PubMed DOI

Rinaldi L, Amadesi A, Dufourd E, Bosco A, Gadanho M, Lehebel A, et al. . Rapid assessment of faecal egg count and faecal egg count reduction through composite sampling in cattle. Parasit Vectors. (2019) 12:353. 10.1186/s13071-019-3601-x PubMed DOI PMC

Amadesi A, Bosco A, Rinaldi L, Cringoli G, Claerebout E, Maurelli MP. Cattle gastrointestinal nematode egg-spiked faecal samples: high recovery rates using the Mini-FLOTAC technique. Parasit Vect. (2020) 13:230–7. 10.1186/s13071-020-04107-0 PubMed DOI PMC

Chartier C, Ravinet N, Bosco A, Dufourd E, Gadanho M, Chauvin A, et al. Assessment of anthelmintic efficacy against cattle gastrointestinal nematodes in western France and southern Italy. J Helminthol. (2020) 94:e125 10.1017/S0022149X20000085 PubMed DOI

Aspers P, Corte U. What is qualitative in qualitative research. Qual. Sociol. (2019) 42:139–60. 10.1007/s11133-019-9413-7 PubMed DOI PMC

Schwarze ML, Kaji AH, Ghaferi AA. Practical guide to qualitative analysis. JAMA Surg. (2020) 155:252–3. 10.1001/jamasurg.2019.4385 PubMed DOI

Kyngäs H, Kääriäinen M, Elo S. The trustworthiness of content analysis. In: H Kyngäs, K Mikkonen, M Kääriäinen, editors. The Application of Content Analysis in Nursing Science Research. Cham: Springer; (2020). 10.1007/978-3-030-30199-6 DOI

Kim SY. Efficacy versus effectiveness. Editorial Korean J Fam Med. (2013) 34:227 10.4082/kjfm.2013.34.4.227 PubMed DOI PMC

Kyngäs H. Inductive content analysis. In: H Kyngäs, K Mikkonen, M Kääriäinen, editors. The Application of Content Analysis in Nursing Science Research. Cham: Springer; (2020). p. 13–22.

Siqueira do Prado L, Allemann S, Viprey M, Schott A, Dediu D, Dima AL. Quantification and visualisation methods of data-driven chronic care delivery pathways: protocol for a systematic review and content analysis. BMJ Open. (2020) 1:e033573. 10.1136/bmjopen-2019-033573 PubMed DOI PMC

Aguinis H, Solarino AM. Transparency and replicability in qualitative research: the case of interviews with elite informants. Strat Manag J. (2019) 40:1291–315. 10.1002/smj.3015 DOI

Barda B, Albonico M, Ianniello D, Ame SM, Keiser J, Speich B, et al. . How long can stool samples be fixed for an accurate diagnosis of soil-transmitted helminth infection using Mini-FLOTAC? PLoS Negl Trop Dis. (2015) 9:e0003698. 10.1371/journal.pntd.0003698 PubMed DOI PMC

Rinaldi L, Coles GC, Maurelli MP, Musella V, Cringoli G. Calibration and diagnostic accuracy of simple flotation, McMaster and FLOTAC for parasite egg counts in sheep. Vet Parasitol. (2011) 177:345–52. 10.1016/j.vetpar.2010.12.010 PubMed DOI

Scare JA, Slusarewicz P, Noel ML, Wielgus KM, Nielsen MK. Evaluation of accuracy and precision of a smartphone based automated parasite egg counting system in comparison to the McMaster and Mini- FLOTAC methods. Vet Parasitol. (2017) 247:85–92. 10.1016/j.vetpar.2017.10.005 PubMed DOI

Norris JK, Slusarewicz P, Nielsen MK. Pixel by pixel: real-time observation and quantification of passive flotation speeds of three common equine endoparasite egg types. Int J Parasitol. (2019) 49:885–92. 10.1016/j.ijpara.2019.06.004 PubMed DOI

Nápravníková J, Petrtýl M, Stupka R, Vadlejch J. Reliability of three common fecal egg counting techniques for detecting strongylid and ascarid infections in horses. Vet Parasitol. (2019) 272:53–7. 10.1016/j.vetpar.2019.07.001 PubMed DOI

Foreyet WJ. Veterinary Parasitology. 5th ed Iowa: Iowa State Press; (2001).

Ferroni L, Lovito C, Scoccia E, Dalmonte G, Sargenti M, Pezzotti G, et al. . Antibiotic consumption on dairy and beef cattle farms of central Italy based on paper registers. Antibiotics. (2020) 9:273–96. 10.3390/antibiotics9050273 PubMed DOI PMC

Vande Velde F, Claerebout E, Cauberghe V, Hudders L, Van Loo H, Vercruysse J, et al. . Diagnosis before treatment: identifying dairy farmers' determinants for the adoption of sustainable practices in gastrointestinal nematode control. Vet Parasitol. (2015) 212:308–17. 10.1016/j.vetpar.2015.07.013 PubMed DOI

Vande Velde F, Charlier J, Claerebout E. Farmer behaviour and gastrointestinal nematodes in ruminant livestock–uptake of sustainable control approaches. Front Vet Sci. (2018) 5:255. 10.3389/fvets.2018.00255 PubMed DOI PMC

Vande Velde F, Charlier J, Hudders L, Cauberghe V, Claerebout E. Beliefs, intentions, and beyond: a qualitative study on the adoption of sustainable gastrointestinal nematode control practices in Flanders' dairy industry. Prev Vet Med. (2018) 153:15–23. 10.1016/j.prevetmed.2018.02.020 PubMed DOI

Berckmans D. General introduction to precision livestock farming. Anim Front. (2017) 7:6–11. 10.2527/af.2017.0102 DOI

Bos JM, Bovenkerk B, Feindt PH, van Dam YK. The quantified animal: precision livestock farming and the ethical implications of objectification. Food Ethics. (2018) 2:77–92. 10.1007/s41055-018-00029-x DOI

Fox NJ, Smith LA, Houdijk JGM, Athanasiadou S, Hutchings MR. Ubiquitous parasites drive a 33% increase in methane yield from livestock. Int J Parasitol. (2018) 48:1017–21. 10.1016/j.ijpara.2018.06.001 PubMed DOI

Morgan E, Aziz NA, Blanchard A, Charlier J, Charvet C, Claerebout E, et al. . 100 questions in livestock helminthology research. Trend Parasitol. (2019) 35:52–71. 10.1016/j.pt.2018.10.006 PubMed DOI

Jack C, Hotchkiss E, Sarginson ND, Toma L, Milne C, Bartley DJ. A quantitative analysis of attitudes and behaviours concernings ustainable parasite control practices from Scottish sheep farmers. Prev Vet Med. (2017) 139:134–45. 10.1016/j.prevetmed.2017.01.018 PubMed DOI

Bosco A, Rinaldi L, Maurelli MP, Musella V, Coles GC, Cringoli G. The comparison of FLOTAC, FECPAK and McMaster techniques for nematode egg counts in cattle. Acta Parasitol. (2014) 59:625–8. 10.2478/s11686-014-0282-7 PubMed DOI

Rashid MH, Stevenson MA, Waenga S, Mirams G, Campbell AJD, Vaughan JL, et al. . Comparison of McMaster and FECPAKG2 methods for counting nematode eggs in the faeces of alpacas. Parasit Vectors. (2018) 11:278. 10.1186/s13071-018-2861-1 PubMed DOI PMC

Ozili P, Arun T. Spillover of COVID-19: impact on the Global Economy. SSRN Electr J. (2020) 1–27. 10.2139/ssrn.3562570 DOI

Le Bras P, Gharavi A, Robb DA, Vidal AF, Padilla S, Chantler MJ. Visualising COVID-19 Research. arXiv. (2020) arXiv:2005.06380v2.

Nicola M, Alsafi Z, Sohrabi C, Kerwan A, Al-Jabir A, Iosifidis C, et al. . The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int J Surg. (2020) 78:185–93. 10.1016/j.ijsu.2020.04.018 PubMed DOI PMC

Lim MD, Brooker SJ, Belizario VY, Gay-Andrieu F, Gilleard J, Levecke B, et al. . Diagnostic tools for soil-transmitted helminths control and elimination programs: a pathway for diagnostic product development. PLoS Negl Trop Dis. (2018) 12:e0006213. 10.1371/journal.pntd.0006213 PubMed DOI PMC

Cools P, Vlaminck J, Albonico M, Ame S, Ayana M, Barrios Perez JA, et al. . Diagnostic performance of a single and duplicate Kato-Katz, Mini-FLOTAC, FECPAKG2 and qPCR for the detection and quantification of soil-transmitted helminths in three endemic countries. PLoS negl Trop Dis. (2018) 13:e0007446. 10.1371/journal.pntd.0007446 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...