Salivary microbiome composition changes after bariatric surgery

. 2020 Nov 18 ; 10 (1) : 20086. [epub] 20201118

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33208788
Odkazy

PubMed 33208788
PubMed Central PMC7674438
DOI 10.1038/s41598-020-76991-6
PII: 10.1038/s41598-020-76991-6
Knihovny.cz E-zdroje

Recent studies show that the salivary microbiome in subjects with obesity differ from those without obesity, but the mechanism of interaction between the salivary microbiome composition and body weight is unclear. Herein we investigate this relation by analyzing saliva samples from 35 adult patients with obesity undergoing bariatric surgery. Our aim was to describe salivary microbiome changes during body weight loss on an individual-specific level, and to elucidate the effect of bariatric surgery on the salivary microbiome which has not been studied before. Analysis of samples collected before and 1 day after surgery, as well as 3 and 12 months after surgery, showed that the salivary microbiome changed in all study participants, but these changes were heterogeneous. In the majority of participants proportions of Gemella species, Granulicatella elegans, Porphyromonas pasteri, Prevotella nanceiensis and Streptococcus oralis decreased, while Veillonella species, Megasphaera micronuciformis and Prevotella saliva increased. Nevertheless, we found participants deviating from this general trend which suggests that a variety of individual-specific factors influence the salivary microbiome composition more effectively than the body weight dynamics alone. The observed microbiome alternations could be related to dietary changes. Therefore, further studies should focus on association with altered taste preferences and potential oral health consequences.

Zobrazit více v PubMed

Hruby A, Hu FB. The epidemiology of obesity: A big picture. Pharmacoeconomics. 2015;33:673–689. doi: 10.1007/s40273-014-0243-x. PubMed DOI PMC

Ng M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–781. doi: 10.1016/S0140-6736(14)60460-8. PubMed DOI PMC

Turnbaugh PJ, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414. PubMed DOI

Zhao L. The gut microbiota and obesity: From correlation to causality. Nat. Rev. Microbiol. 2013;11:639–647. doi: 10.1038/nrmicro3089. PubMed DOI

Fetissov SO. Role of the gut microbiota in host appetite control: Bacterial growth to animal feeding behaviour. Nat. Rev. Endocrinol. 2017;13:11–25. doi: 10.1038/nrendo.2016.150. PubMed DOI

Muscogiuri G, et al. Gut microbiota: A new path to treat obesity. Int. J. Obes. Suppl. 2019;9:10–19. doi: 10.1038/s41367-019-0011-7. PubMed DOI PMC

Zeigler CC, et al. Microbiota in the oral subgingival biofilm is associated with obesity in adolescence. Obesity. 2012;20:157–164. doi: 10.1038/oby.2011.305. PubMed DOI

Goodson JM, et al. The salivary microbiome is altered in the presence of a high salivary glucose concentration. PLoS ONE. 2017;12:e0170437. doi: 10.1371/journal.pone.0170437. PubMed DOI PMC

Janem WF, et al. Salivary inflammatory markers and microbiome in normoglycemic lean and obese children compared to obese children with type 2 diabetes. PLoS ONE. 2017;12:e0172647. doi: 10.1371/journal.pone.0172647. PubMed DOI PMC

Mervish NA, et al. Associations of the oral microbiota with obesity and menarche in inner city girls. J. Child. Obes. 2019;4:2. PubMed PMC

Raju SC, et al. Gender-specific associations between saliva microbiota and body size. Front. Microbiol. 2019;10:767. doi: 10.3389/fmicb.2019.00767. PubMed DOI PMC

Wang RR, et al. Association of the oral microbiome with the progression of impaired fasting glucose in a Chinese elderly population. J. Oral. Microbiol. 2019;11:1605789. doi: 10.1080/20002297.2019.1605789. PubMed DOI PMC

Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019;16:461–478. doi: 10.1038/s41575-019-0157-3. PubMed DOI

Hoffman KL, et al. Oral microbiota reveals signs of acculturation in Mexican American women. PLoS ONE. 2018;13:e0194100. doi: 10.1371/journal.pone.0194100. PubMed DOI PMC

Wu Y, Chi X, Zhang Q, Chen F, Deng X. Characterization of the salivary microbiome in people with obesity. PeerJ. 2018;6:e4458. doi: 10.7717/peerj.4458. PubMed DOI PMC

Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 2017;8:1784. doi: 10.1038/s41467-017-01973-8. PubMed DOI PMC

Gibbons SM. Defining microbiome health through a host lens. mSystems. 2019;4:e00155. doi: 10.1128/mSystems.00155-19. PubMed DOI PMC

Adams TD, et al. Weight and metabolic outcomes 12 years after gastric bypass. N. Engl. J. Med. 2017;377:1143–1155. doi: 10.1056/NEJMoa1700459. PubMed DOI PMC

Pories WJ. Bariatric surgery: Risks and rewards. J. Clin. Endocrinol. Metab. 2008;93:S89–S96. doi: 10.1210/jc.2008-1641. PubMed DOI PMC

Schauer PR, Nor Hanipah Z, Rubino F. Metabolic surgery for treating type 2 diabetes mellitus: Now supported by the world's leading diabetes organizations. Cleve Clin. J. Med. 2017;84:S47–S56. doi: 10.3949/ccjm.84.s1.06. PubMed DOI

Damms-Machado A, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed. Res. Int. 2015;2015:806248. doi: 10.1155/2015/806248. PubMed DOI PMC

Tremaroli V, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228–238. doi: 10.1016/j.cmet.2015.07.009. PubMed DOI PMC

Ilhan ZE, et al. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J. 2017;11:2047–2058. doi: 10.1038/ismej.2017.71. PubMed DOI PMC

Elliott JA, Reynolds JV, le Roux CW, Docherty NG. Physiology, pathophysiology and therapeutic implications of enteroendocrine control of food intake. Expert Rev. Endocrinol. Metab. 2016;6:475–499. doi: 10.1080/17446651.2016.1245140. PubMed DOI

Sweeney TE, Morton JM. Metabolic surgery: Action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Best Pract. Res. Clin. Gastroenterol. 2014;28:727–740. doi: 10.1016/j.bpg.2014.07.016. PubMed DOI PMC

Paganelli FL, et al. Roux-Y gastric bypass and sleeve gastrectomy directly change gut microbiota composition independent of surgery type. Sci. Rep. 2019;9:10979. doi: 10.1038/s41598-019-47332-z. PubMed DOI PMC

Li JV, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut. 2011;60:1214–1223. doi: 10.1136/gut.2010.234708. PubMed DOI PMC

Davies NK, O'Sullivan JM, Plank LD, Murphy R. Altered gut microbiome after bariatric surgery and its association with metabolic benefits: A systematic review. Surg. Obes. Relat. Dis. 2019;15:656–665. doi: 10.1016/j.soard.2019.01.033. PubMed DOI

Guo Y, et al. Modulation of the gut microbiome: A systematic review of the effect of bariatric surgery. Eur. J. Endocrinol. 2018;178:43–56. doi: 10.1530/EJE-17-0403. PubMed DOI

Shillitoe E, et al. The oral microflora in obesity and type-2 diabetes. J. Oral Microbiol. 2012;4:19013. doi: 10.3402/jom.v4i0.19013. PubMed DOI PMC

Marsicano JA, et al. Interfaces between bariatric surgery and oral health: A longitudinal survey. Acta Cir. Bras. 2011;26:79–83. doi: 10.1590/S0102-86502011000800015. PubMed DOI

Hashizume LN, et al. Impact of bariatric surgery on the saliva of patients with morbid obesity. Obes. Surg. 2015;25:1550–1555. doi: 10.1007/s11695-015-1741-4. PubMed DOI

El-Hadi M, Birch DW, Gill RS, Karmali S. The effect of bariatric surgery on gastroesophageal reflux disease. Can. J. Surg. 2014;57:139–144. doi: 10.1503/cjs.030612. PubMed DOI PMC

Sujatha S, et al. Oral pH in gastroesophageal reflux disease. Indian J. Gastroenterol. 2016;35:186–189. doi: 10.1007/s12664-016-0659-7. PubMed DOI

Zhou J, et al. Influences of pH and iron concentration on the salivary microbiome in individual humans with and without caries. Appl. Environ. Microbiol. 2017;83:e02412–e2416. PubMed PMC

Cattaneo C, et al. New insights into the relationship between taste perception and oral microbiota composition. Sci. Rep. 2019;9:3549. doi: 10.1038/s41598-019-40374-3. PubMed DOI PMC

Cabral DJ, et al. The salivary microbiome is consistent between subjects and resistant to impacts of short-term hospitalization. Sci. Rep. 2017;7:11040. doi: 10.1038/s41598-017-11427-2. PubMed DOI PMC

Lloyd-Price J, et al. Strains, functions and dynamics in the expanded human microbiome project. Nature. 2017;550:61–66. doi: 10.1038/nature23889. PubMed DOI PMC

Džunková M, et al. Oxidative stress in the oral cavity is driven by individual-specific bacterial communities. NPJ Biofilms Microbiomes. 2018;4:29. doi: 10.1038/s41522-018-0072-3. PubMed DOI PMC

Hall MW, et al. Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity. NPJ Biofilms Microbiomes. 2017;3:2. doi: 10.1038/s41522-016-0011-0. PubMed DOI PMC

Yan Q, et al. Alterations of the gut microbiome in hypertension. Front. Cell. Infect. Microbiol. 2017;7:381. doi: 10.3389/fcimb.2017.00381. PubMed DOI PMC

Medina DA, et al. Cross-regional view of functional and taxonomic microbiota composition in obesity and post-obesity treatment shows country specific microbial contribution. Front. Microbiol. 2019;10:2346. doi: 10.3389/fmicb.2019.02346. PubMed DOI PMC

Aron-Wisnewsky J, et al. Major microbiota dysbiosis in severe obesity: Fate after bariatric surgery. Gut. 2019;68:70–82. doi: 10.1136/gutjnl-2018-316103. PubMed DOI PMC

Zaura E, Nicu EA, Krom BP, Keijser BJF. Acquiring and maintaining a normal oral microbiome: Current perspective. Front. Cell. Infect. Microbiol. 2014;4:85. doi: 10.3389/fcimb.2014.00085. PubMed DOI PMC

Acharya A, et al. Salivary microbiome in non-oral disease: A summary of evidence and commentary. Arch. Oral Biol. 2017;83:169–173. doi: 10.1016/j.archoralbio.2017.07.019. PubMed DOI

Dagan SS, et al. Nutritional recommendations for adult bariatric surgery patients: Clinical practice. Adv. Nutr. 2017;8:382–394. doi: 10.3945/an.116.014258. PubMed DOI PMC

Klindworth A, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. doi: 10.1093/nar/gks808. PubMed DOI PMC

Schloss PD, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. doi: 10.7717/peerj.2584. PubMed DOI PMC

Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.4. (2017).

Robinson MD, McCarthy DJ, Smyth GK. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Harrell, F. E. Hmisc: Harrell Miscellaneous. R Package Version 4 (2019).

Wei, T. & Simko, V. Corrplot: Visualization of a Correlation Matrix. R Package Version 0.84 (2018).

Eklund, A. Beeswarm: The Bee Swarm Plot, an Alternative to Stripchart. R Package Version 0.2.3. (2016).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...