Opportunistic genomic screening. Recommendations of the European Society of Human Genetics
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33223530
PubMed Central
PMC7940405
DOI
10.1038/s41431-020-00758-w
PII: 10.1038/s41431-020-00758-w
Knihovny.cz E-resources
- MeSH
- Genetic Testing ethics standards MeSH
- Human Genetics ethics organization & administration standards MeSH
- Humans MeSH
- Practice Guidelines as Topic * MeSH
- Societies, Medical standards MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
If genome sequencing is performed in health care, in theory the opportunity arises to take a further look at the data: opportunistic genomic screening (OGS). The European Society of Human Genetics (ESHG) in 2013 recommended that genome analysis should be restricted to the original health problem at least for the time being. Other organizations have argued that 'actionable' genetic variants should or could be reported (including American College of Medical Genetics and Genomics, French Society of Predictive and Personalized Medicine, Genomics England). They argue that the opportunity should be used to routinely and systematically look for secondary findings-so-called opportunistic screening. From a normative perspective, the distinguishing characteristic of screening is not so much its context (whether public health or health care), but the lack of an indication for having this specific test or investigation in those to whom screening is offered. Screening entails a more precarious benefits-to-risks balance. The ESHG continues to recommend a cautious approach to opportunistic screening. Proportionality and autonomy must be guaranteed, and in collectively funded health-care systems the potential benefits must be balanced against health care expenditures. With regard to genome sequencing in pediatrics, ESHG argues that it is premature to look for later-onset conditions in children. Counseling should be offered and informed consent is and should be a central ethical norm. Depending on developing evidence on penetrance, actionability, and available resources, OGS pilots may be justified to generate data for a future, informed, comparative analysis of OGS and its main alternatives, such as cascade testing.
CEQAS GenQA John Radcliffe Hospital Oxford University Hospitals NHS Foundation Trust Oxford UK
Clinical Genetics Department Guy's and St Thomas' NHS Foundation Trust London UK
Département de génétique SYNLAB Chemin d'Entre Bois 21 1018 Lausanne Switzerland
Department of Genetics and Molecular Medicine Landspitali University Hospital Reykjavik Iceland
Genomics England Queen Mary University of London London UK
Medical Ethics Lund Universitet Lund SE 221 00 Sweden
Praxis für Humangenetik Mannheim Germany
Society and Ethics Research Group Connecting Science Wellcome Genome Campus Cambridge CB10 1SA UK
The ColLaboratory University of Lausanne Lausanne Switzerland
See more in PubMed
Van El,CG, Cornel MC, Borry P, Hastings RJ, Fellmann F, Hodgson SV, et al. Public and Professional Policy Committee (2013). Whole-genome sequencing in health care: recommendations of the European Society of Human Genetics. Eur J Hum Genet. 2013;21:580–4. doi: 10.1038/ejhg.2013.46. PubMed DOI PMC
German Society of Human Genetics. Deutsche Gesellschaft für Humangenetik (GfH). Stellungnahme der Deutschen Gesellschaft für Humangenetik zu genetischen Zusatzbefunden in Diagnostik und Forschung. Med Gen. 2013;25:284–6.
Health Council of the Netherlands. The Hague: Health Council of the Netherlands, 2015; publication no. 2015/01. [Executive Summary in English https://www.gezondheidsraad.nl/documenten/adviezen/2015/02/04/next-generation-sequencing-in-diagnostiek].
Boycott K, Hartley T, Adam S, Bernier F, Chong K, Fernandez BA, et al. The clinical application of genome-wide sequencing for monogenic diseases in Canada: Position Statement of the Canadian College of Medical Geneticists. J Med Genet. 2015;52:431–7. doi: 10.1136/jmedgenet-2015-103144. PubMed DOI PMC
French Agency of Biomedicine. Projet de recommandations de bonnes pratiques professionnelles en matière de gestion des résultats d’un examen de séquençage pangénomique sans relation directe avec l’indication initiale dans le cadre du soin. https://www.agence-biomedecine.fr/IMG/pdf/20200107_rbp_donnees_additionnelles_dv.pdf. Accessed 18 Apr 2020.
Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. American College of Medical Genetics and Genomics. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74. doi: 10.1038/gim.2013.73. PubMed DOI PMC
Pujol P, Vande Perre P, Faivre L, Sanlaville D, Corsini C, Baertschi B, et al. Guidelines for reporting secondary findings of genome sequencing in cancer genes: the SFMPP recommendations. Eur J Hum Genet. 2018;26:1732–42. doi: 10.1038/s41431-018-0224-1. PubMed DOI PMC
Holtzman NA. ACMG recommendations on incidental findings are flawed scientifically and ethically. Genet Med. 2013;15:750–1. doi: 10.1038/gim.2013.96. PubMed DOI
Isidor B, Julia S, Saugier-Veber P, Weil-Dubuc PL, Bézieau S, Bieth E, et al. Searching for secondary findings: considering actionability and preserving the right not to know. Eur J Hum Genet. 2019;27:1481–4. doi: 10.1038/s41431-019-0438-x. PubMed DOI PMC
Nussbaum RL, Haverfield E, Esplin ED, Aradhya S. Response to “The use of ACMG secondary findings recommendations for general population screening: a policy statement of the American College of Medical Genetics and Genomics (ACMG)”. Genet Med. 2019;21:2836–7. doi: 10.1038/s41436-019-0572-4. PubMed DOI
Saelaert M, Mertes H, Moerenhout T, De Baere E, Devisch I. Ethical values supporting the disclosure of incidental and secondary findings in clinical genomic testing: a qualitative study. BMC Med Ethics. 2020;21:9. doi: 10.1186/s12910-020-0452-0. PubMed DOI PMC
De Wert G, Dondorp W. Opportunistic genomic screening: ethical exploration. In: Tibben A & Biesecker B, editors. Clinical genome sequencing. Psychological considerations. London: Elsevier/AP; 2019. pp 203–24.
Martyn M, Kanga-Parabia A, Lynch E, James PA, Macciocca I, Trainer AH, et al. A novel approach to offering additional genomic findings-A protocol to test a two-step approach in the healthcare system. J Genet Couns. 2019;28:388–97. doi: 10.1002/jgc4.1102. PubMed DOI
Lynch E, Martyn M, Lee L, Kanga-Parabia A, Weerasuriya R, Tytherleigh R et al. Abstract ESHG Conference 9 June 2020; (Abstract C31.2). https://www.abstractsonline.com/pp8/#!/9102/presentation/138.
Vears DF, Elferink M, Kriek M, Borry P, van Gassen KL.Analysis of laboratory reporting practices using a quality assessment of a virtual patient. Genet Med. 2020. 10.1038/s41436-020-01015-7. [Epub ahead of print]. PubMed
Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med. 2013;158:588–95. doi: 10.7326/0003-4819-158-8-201304160-00003. PubMed DOI PMC
Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19:249–55. doi: 10.1038/gim.2016.190. PubMed DOI
American College of Medical Genetics and Genomics. Incidental findings in clinical genomics: a clarification. Genet Med. 2013;15:664–6. doi: 10.1038/gim.2013.82. PubMed DOI
McGuire AL, Joffe S, Koenig BA, Biesecker BB, McCullough LB, Blumenthal-Barby JS, et al. Point-counterpoint. Ethics and genomic incidental findings. Science. 2013;340:1047–8. doi: 10.1126/science.1240156. PubMed DOI PMC
NHS: https://www.england.nhs.uk/genomics/nhs-genomic-med-service/. Accessed 18 Apr 2020.
Government UK. https://www.gov.uk/government/news/matt-hancock-announces-ambition-to-map-5-million-genomes. Accessed 12 Aug 2020.
Genomics England 2020 https://www.genomicsengland.co.uk/information-for-participants/findings/.
Wilson JMG, Jungner G. Principles and practice of screening for disease. Geneva: World Health Organization;1968.
Andermann A, Blancquaert I, Beauchamp S, Déry V. Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bull World Health Organ. 2008;86:317–9. doi: 10.2471/BLT.07.050112. PubMed DOI PMC
Brothers KB, Vassy JL, Green RC. Reconciling opportunistic and population screening in clinical genomics. Mayo Clin Proc. 2019;94:103–9. doi: 10.1016/j.mayocp.2018.08.028. PubMed DOI PMC
ACMG Board of Directors. The use of ACMG secondary findings recommendations for general population screening: a policy statement of the American College of Medical Genetics and Genomics (ACMG) Genet Med. 2019;21:1467–8. doi: 10.1038/s41436-019-0502-5. PubMed DOI
Juth N, Munthe C. The Ethics of Screening in Health Care and Medicine. Serving Society or Serving the Patient? Dordrecht Heildelberg London New York: Springer Verlag; 2012.
Cochrane AL, Holland WW. Validations of screening procedures. Br Med Bull. 1971;27:3–8. doi: 10.1093/oxfordjournals.bmb.a070810. PubMed DOI
Haer-Wigman L, van der Schoot V, Feenstra I, Vulto-van Silfhout AT, Gilissen C, Brunner HG, et al. 1 in 38 individuals at risk of a dominant medically actionable disease. Eur J Hum Genet. 2019;27:325–30. doi: 10.1038/s41431-018-0284-2. PubMed DOI PMC
Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations (2018) Nat Genet. 2018;50:1219–24. doi: 10.1038/s41588-018-0183-z. PubMed DOI PMC
Burke W, Antommaria AH, Bennett R, Botkin J, Clayton EW, Henderson GE, et al. Recommendations for returning genomic incidental findings? We need to talk!. Genet Med. 2013;15:854–9. doi: 10.1038/gim.2013.113. PubMed DOI PMC
Walsh R, Thomson KL, Ware JS, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19:192–203. doi: 10.1038/gim.2016.90. PubMed DOI PMC
Walsh R, Tadros R, Bezzina CR. When genetic burden reaches threshold. Eur Heart J. 2020. 10.1093/eurheartj/ehaa269. PubMed PMC
Adler A, Novelli V, Amin AS, Abiusi E, Care M, Nannenberg EA, et al. An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome. Circulation. 2020;141:418–28. doi: 10.1161/CIRCULATIONAHA.119.043132. PubMed DOI PMC
Turner H, Jackson L. Evidence for penetrance in patients without a family history of disease: a systematic review. Eur J Hum Genet. 2020. 10.1038/s41431-019-0556-5. PubMed PMC
Neumann HP, Pawlu C, Peczkowska M, Bausch B, McWhinney SR, Muresan M, et al. European-American Paraganglioma Study Group. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA. 2004;292:943–51. doi: 10.1001/jama.292.8.943. PubMed DOI
Rijken JA, Niemeijer ND, Jonker MA, Eijkelenkamp K, Jansen JC, van Berkel A, et al. The penetrance of paraganglioma and pheochromocytoma in SDHB germline mutation carriers. Clin Genet. 2018;93:60–6. doi: 10.1111/cge.13055. PubMed DOI
Andrews KA, Ascher DB, Pires DEV, Barnes DR, Vialard L, Casey RT, et al. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. J Med Genet. 2018;55:384–94. doi: 10.1136/jmedgenet-2017-105127. PubMed DOI PMC
Ackerman JP, Bartos DC, Kapplinger JD, Tester DJ, Delisle BP, Ackerman MJ, et al. The promise and peril of precision medicine: phenotyping still matters most. Mayo Clin Proc. 2016;91:1606–16. doi: 10.1016/j.mayocp.2016.08.008. PubMed DOI PMC
Manrai AK, Funke BH, Rehm HL, Olesen MS, Maron BA, Szolovits P, et al. Genetic misdiagnoses and the potential for health disparities. N. Engl J Med. 2016;375:655–65. doi: 10.1056/NEJMsa1507092. PubMed DOI PMC
Elmore SNC. P53 and Me. N. Engl J Med. 2018;378:1962–3. doi: 10.1056/NEJMp1803542. PubMed DOI
Sapp JC, Johnston JJ, Driscoll K, Heidlebaugh AR, Miren Sagardia A, Dogbe DN, et al. Evaluation of positive and negative secondary findings evaluations in a hybrid CLIA-research sequencing pilot. Am J Hum genet. 2018;103:358–66. doi: 10.1016/j.ajhg.2018.07.018. PubMed DOI PMC
Hart MR, BieseckerBB, Blout CL, Christensen KD, Amendola LM, Bergstrom KL, et al. Secondary findings from clinical genomic sequencing: prevalence, patient perspectives, family history assessment, and health-care costs from a multisite study. Genet Med. 2019;21:1100–10. doi: 10.1038/s41436-018-0308-x. PubMed DOI PMC
Stefansdottir V, Thorolfsdottir E, Hognason HB, Patch C, Van El C, Hentze, S et al. Web-based return of BRCA2 research results: one-year genetic counselling experience in Iceland. Eur J Hum Genet. 2020. 10.1038/s41431-020-0665-1. PubMed PMC
Timmermans S, Buchbinder M. Patients-in-waiting: Living between sickness and health in the genomics era. J Health Soc Behav. 2010;51:408–23. doi: 10.1177/0022146510386794. PubMed DOI
Mohammed S, Lim Z, Dean PH, Potts JE, Tang JN, Etheridge SP, et al. Genetic insurance discrimination in sudden arrhythmia death syndromes: empirical evidence from a cross-sectional survey in North America. Circ Cardiovasc Genet. 2017;10:pii: e001442. doi: 10.1161/CIRCGENETICS.116.001442. PubMed DOI
Khera AV, Mason-Suares H, Brockman D, Wang M, VanDenburgh MJ, Senol-Cosar O, et al. Rare genetic variants associated with sudden cardiac death in adults. J Am Coll Cardiol. 2019;74:2623–34. doi: 10.1016/j.jacc.2019.08.1060. PubMed DOI PMC
Joly Y, Saulnier KM, Osien G, Knoppers BM. The ethical framing of personalized medicine. Curr Opin Allergy Clin Immunol. 2014;14:404–8. doi: 10.1097/ACI.0000000000000091. PubMed DOI
Wilfond BS, Nolan K. National policy development for the clinical application of genetic diagnostic technologies. Lessons Cyst Fibros JAMA. 1993;270:2948–54. PubMed
Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun. 2019;10:3328. doi: 10.1038/s41467-019-11112-0. PubMed DOI PMC
Marteau TM, French DP, Griffin SJ, Prevost AT, Sutton S, Watkinson C, et al. Effects of communicating DNA-based disease risk estimates on risk-reducing behaviours. Cochrane Libr. 2010;10:1–74. PubMed
Wolf SM, Annas GJ, Elias S. Point-Counterpoint. Patient autnomy and incidental findings in clinical genomics. Science. 2013;340:1049–50. doi: 10.1126/science.1239119. PubMed DOI PMC
Dondorp W, Sikkema-Raddatz B, de Die-Smulders C, de Wert G. Arrays in postnatal and prenatal diagnosis: an exploration of the ethics of consent. Hum Mutat. 2012;33:916–22. doi: 10.1002/humu.22068. PubMed DOI
Dheensa S, Samuel S, Lucassen AM, Farsides B. Towards a national genomics medicine service: the challenges facing clinical-research hybrid practices and the case of the 100 000 genomes project. J Med Ethics. 2018;44:397–403. doi: 10.1136/medethics-2017-104588. PubMed DOI PMC
Carrieri D, Howard HC, Benjamin C, Clarke AJ, Dheensa S, Doheny S, et al. Recontacting patients in clinical genetics services: recommendations of the European Society of Human Genetics. Eur J Hum Genet. 2019;27:169–82. doi: 10.1038/s41431-018-0285-1. PubMed DOI PMC
Minikel EV, Vallabh SM, Lek M, Estrada K, Samocha KE, Sathirapongsasuti JF, et al. Quantifying prion disease penetrance using large population control cohorts. Sci Transl Med. 2016;8:322ra9. doi: 10.1126/scitranslmed.aad5169. PubMed DOI PMC
Lacaze P, Pinese M, Kaplan W, Stone A, Brion MJ, Woods RL, et al. The Medical Genome Reference Bank: a whole-genome data resource of 4000 healthy elderly individuals. Rationale and cohort design. Eur J Hum Genet. 2019;27:308–16. doi: 10.1038/s41431-018-0279-z. PubMed DOI PMC
Booth Th. Incidental findings on imaging. BMJ. 2018;361:k2611. doi: 10.1136/bmj.k2611. PubMed DOI
Severin F, Borry P, Cornel M, Daniels N, Fellmann F, Victoria Hodgson S, et al. Points to consider for prioritizing clinical genetic testing services: a European consensus process oriented at accountability for reasonableness. Eur J Hum Genet. 2015;23:729–35. doi: 10.1038/ejhg.2014.190. PubMed DOI PMC
Center for Disease Control Office of Public Health Genomics. 2014. https://www.cdc.gov/genomics/implementation/toolkit/tier1.htm. Accessed 3 June 2020.
Center for Disease Control Office of Public Health Genomics. 2019. https://www.cdc.gov/genomics/about/aag/index.htm. Accessed 17 June 2020.
Center for Disease Control Office of Public Health Genomics. 2020a. https://www.cdc.gov/genomics/disease/breast_ovarian_cancer/basics_hboc.htm.
Center for Disease Control Office of Public Health Genomics. 2020b. https://www.cdc.gov/genomics/disease/fh/testing_FH.htm. Accessed 17 June 2020.
Pujol P, Lyonnet DS, Frebourg T, Blin J, Picot MC, Lasset C, et al. Lack of referral for genetic counseling and testing in BRCA1/2 and Lynch syndromes: a nationwide study based on 240,134 consultations and 134,652 genetic tests. Breast Cancer Res Treat. 2013;141:135–144. doi: 10.1007/s10549-013-2669-9. PubMed DOI
West KM, Blacksher E, Burke W. Genomics, health disparities, and missed opportunities for the nation’s research agenda. JAMA. 2017;317:1831–2. doi: 10.1001/jama.2017.3096. PubMed DOI PMC
Bentley AR, Callier S, Rotimi CN. Diversity and inclusion in genomic research: why the uneven progress? J Community Genet. 2017;8:255–66. doi: 10.1007/s12687-017-0316-6. PubMed DOI PMC
Van der Giessen JAM, van Riel E, Velthuizen ME, van Dulmen AM, Ausems MGEM. Referral to cancer genetic counseling: do migrant status and patients’ educational background matter? J Community Genet. 2017;8:303–10. doi: 10.1007/s12687-017-0326-4. PubMed DOI PMC
Tudor Hart J. The inverse care law. Lancet. 1971;297:405–12. doi: 10.1016/S0140-6736(71)92410-X. PubMed DOI
Zamora B, Maignen F, O’Neill P, Mestre-Ferrandiz J, Garau M, et al. Comparing access to orphan medicinal products in Europe. Orphanet J Rare Dis. 2019;14:95. doi: 10.1186/s13023-019-1078-5. PubMed DOI PMC
Clarke A. 6n. Oxford: BIOS; 1998.
De Wert G. Met het oog op de toekomst (in Dutch). Amsterdam: Thela thesis; 1999.
Borry P, Evers-Kiebooms G, Cornel M, Clarke A, Dierickx K, Public and Professional Policy Committee (PPPC) of the European Society of Human Genetics (ESHG Genetic testing in asymptomatic minors. Background document towards ESHG Recommendations. Eur J Hum Genet. 2009;17:711–9. doi: 10.1038/ejhg.2009.25. PubMed DOI PMC
Howard HC, Knoppers BM, Cornel MC, Wright Clayton E, Sénécal K, Borry P. Whole-genome sequencing in newborn screening? A statement on the continued importance of targeted approaches in newborn screening programmes. Eur J Hum Genet. 2015;23:1593–600. doi: 10.1038/ejhg.2014.289. PubMed DOI PMC
Best S, Wou K, Vora N, Van der Veyver IB, Wapner R, Chitty LS. Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat Diagn. 2018;38:10–19. doi: 10.1002/pd.5102. PubMed DOI PMC
Lantos JD. Ethical and Psychosocial Issues in Whole Genome Sequencing (WGS) for Newborns. Pediatrics. 2019;143:S1–S5. doi: 10.1542/peds.2018-1099B. PubMed DOI