• This record comes from PubMed

Effect of a Simulated Match on Lower Limb Neuromuscular Performance in Youth Footballers-A Two Year Longitudinal Study

. 2020 Nov 19 ; 17 (22) : . [epub] 20201119

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The aim of this study was to explore the effects of simulated soccer match play on neuromuscular performance in adolescent players longitudinally over a two-year period. Eleven players completed all measurements in both years of the study (1st year: age 16.0 ± 0.4 y; stature 178.8 ± 6.4 cm; mass 67.5 ± 7.8 kg; maturity-offset 2.24 ± 0.71 y). There was a significant reduction in hamstring strength after simulated match by the soccer-specific aerobic field test (SAFT90), with four out of eight parameters compromised in U16s (4.7-7.8% decrease) and six in the U17s (3.1-15.4%). In the U17s all of the concentric quadriceps strength parameters were decreased (3.7-8.6%) as well as the vastus lateralis and semitendinosus firing frequency (26.9-35.4%). In both ages leg stiffness decreased (9.2-10.2%) and reactive strength increased pre to post simulated match (U16 8.0%; U17 2.5%). A comparison of changes between age groups did not show any differences. This study demonstrates a decrease in neuromuscular performance post simulated match play in both ages but observed changes were not age dependent.

See more in PubMed

Los Arcos Larumbe A., Mendiguchia J., Yanci J. Specificity of jumping, acceleration and quick change-of-direction motor abilities in soccer players. Kinesiology. 2017;49:22–29. doi: 10.26582/k.49.1.12. DOI

Malý T., Zahálka F., Malá L., Teplan J. Profile, correlation and structure of speed in youth elite soccer players. J. Hum. Kinet. 2014;40:149–159. doi: 10.2478/hukin-2014-0017. PubMed DOI PMC

Stølen T., Chamari K., Castagna C., Wisløff U. Physiology of soccer: An update. Sports Med. 2005;35:501–536. doi: 10.2165/00007256-200535060-00004. PubMed DOI

Bastos F.N., Vanderlei F.M., Vanderlei L.C.M., Júnior J.N., Pastre C.M. Investigation of characteristics and risk factors of sports injuries in young soccer players: A retrospective study. Int. Arch. Med. 2013;6:14. doi: 10.1186/1755-7682-6-14. PubMed DOI PMC

Ekstrand J., Hägglund M., Waldén M. Injury incidence and injury patterns in professional football: The UEFA injury study. Br. J. Sports Med. 2011;45:553–558. doi: 10.1136/bjsm.2009.060582. PubMed DOI

Read P.J., Oliver J.L., De Ste Croix M.B.A., Myer G.D., Lloyd R.S. An audit of injuries in six English professional soccer academies. J. Sports Sci. 2018;36:1542–1548. doi: 10.1080/02640414.2017.1402535. PubMed DOI

Ekstrand J., Waldén M., Hägglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. Br. J. Sports Med. 2016;50:731–737. doi: 10.1136/bjsports-2015-095359. PubMed DOI

Waldén M., Hägglund M., Werner J., Ekstrand J. The epidemiology of anterior cruciate ligament injury in football (soccer): A review of the literature from a gender-related perspective. Knee Surg. Sports Traumatol. Arthrosc. 2011;19:3–10. doi: 10.1007/s00167-010-1172-7. PubMed DOI

Pfirrmann D., Herbst M., Ingelfinger P., Simon P., Tug S. Analysis of injury incidences in male professional adult and elite youth soccer players: A systematic review. J. Athl. Train. 2016;51:410–424. doi: 10.4085/1062-6050-51.6.03. PubMed DOI PMC

Waldén M., Hägglund M., Magnusson H., Ekstrand J. ACL injuries in men’s professional football: A 15-year prospective study on time trends and return-to-play rates reveals only 65% of players still play at the top level 3 years after ACL rupture. Br. J. Sports Med. 2016;50:744–750. doi: 10.1136/bjsports-2015-095952. PubMed DOI

Greig M. The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am. J. Sports Med. 2008;36:1403–1409. doi: 10.1177/0363546508314413. PubMed DOI

Padua D.A., Arnold B.L., Perrin D.H., Gansneder B.M., Carcia C.R., Granata K.P. Fatigue, vertical leg stiffness, and stiffness control strategies in males and females. J. Athl. Train. 2006;41:294–304. PubMed PMC

Maly T., Sugimoto D., Izovska J., Zahalka F., Mala L. Effect of muscular strength, asymmetries and fatigue on kicking performance in soccer players. Int. J. Sports Med. 2018;39:297–303. doi: 10.1055/s-0043-123648. PubMed DOI

Freckleton G., Pizzari T. Risk factors for hamstring muscle strain injury in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2013;47:351–358. doi: 10.1136/bjsports-2011-090664. PubMed DOI

Fitzpatrick J.F., Akenhead R., Russell M., Hicks K.M., Hayes P.R. Sensitivity and reproducibility of a fatigue response in elite youth football players. Sci. Med. Footb. 2019;3:214–220. doi: 10.1080/24733938.2019.1571685. DOI

Huygaerts S., Cos F., Cohen D.D., Calleja-González J., Guitart M., Blazevich A.J., Alcaraz P.E. Mechanisms of hamstring strain injury: Interactions between fatigue, muscle activation and function. Sports. 2020;8:65. doi: 10.3390/sports8050065. PubMed DOI PMC

Maly T., Zahalka F., Mala L. Unilateral and ipsilateral strength asymmetries in elite youth soccer players with respect to muscle group and limb dominance. Int. J. Morphol. 2016;34:1339–1344. doi: 10.4067/S0717-95022016000400027. DOI

McCall A., Carling C., Davison M., Nedelec M., Le Gall F., Berthoin S., Dupont G. Injury risk factors, screening tests and preventative strategies: A systematic review of the evidence that underpins the perceptions and practices of 44 football (soccer) teams from various premier leagues. Br. J. Sports Med. 2015;49:583–589. doi: 10.1136/bjsports-2014-094104. PubMed DOI PMC

Hughes G., Watkins J. A risk-factor model for anterior cruciate ligament injury. Sports Med. 2006;36:411–428. doi: 10.2165/00007256-200636050-00004. PubMed DOI

Osternig L.R. Assessing human performance. In: Brown E., editor. Isokinetics in Human Performance. Human Kinetics; Champaign, IL, USA: 2000. pp. 77–96.

Alentorn-Geli E., Myer G.D., Silvers H.J., Samitier G., Romero D., Lázaro-Haro C., Cugat R. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surg. Sports Traumatol. Arthrosc. 2009;17:705–729. doi: 10.1007/s00167-009-0813-1. PubMed DOI

Dauty M., Potiron-Josse M., Rochcongar P. Identification of previous hamstring muscle injury by isokinetic concentric and eccentric torque measurement in elite soccer player. Isokinet. Exerc. Sci. 2003;11:139–144. doi: 10.3233/IES-2003-0140. DOI

Chappell J.D., Creighton R.A., Giuliani C., Yu B., Garrett W.E. Kinematics and electromyography of landing preparation in vertical stop-jump: Risks for noncontact anterior cruciate ligament injury. Am. J. Sports Med. 2007;35:235–241. doi: 10.1177/0363546506294077. PubMed DOI

Woods C., Hawkins R.D., Maltby S., Hulse M., Thomas A., Hodson A. The Football Association Medical Research Programme: An audit of injuries in professional football—Analysis of hamstring injuries. Br. J. Sports Med. 2004;38:36–41. doi: 10.1136/bjsm.2002.002352. PubMed DOI PMC

Rahnama N., Reilly T., Lees A., Graham-Smith P. Muscle fatigue induced by exercise simulating the work rate of competitive soccer. J. Sports Sci. 2003;21:933–942. doi: 10.1080/0264041031000140428. PubMed DOI

Proske U., Morgan D.L., Brockett C.L., Percival P. Identifying athletes at risk of hamstring strains and how to protect them. Clin. Exp. Pharmacol. Physiol. 2004;31:546–550. doi: 10.1111/j.1440-1681.2004.04028.x. PubMed DOI

Croisier J.L., Ganteaume S., Binet J., Genty M., Ferret J.M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sports Med. 2008;36:1469–1475. doi: 10.1177/0363546508316764. PubMed DOI

Verrall G.M., Slavotinek J.P., Barnes P.G., Fon G.T., Spriggins A.J. Clinical risk factors for hamstring muscle strain injury: A prospective study with correlation of injury by magnetic resonance imaging. Br. J. Sports Med. 2001;35:435–439. doi: 10.1136/bjsm.35.6.435. PubMed DOI PMC

Melnyk M., Gollhofer A. Submaximal fatigue of the hamstrings impairs specific reflex components and knee stability. Knee Surg. Sports Traumatol. Arthrosc. 2007;15:525–532. doi: 10.1007/s00167-006-0226-3. PubMed DOI

Rozzi S.L., Lephart S.M., Fu F.H. Effects of muscular fatigue on knee joint laxity and neuromuscular characteristics of male and female athletes. J. Athl. Train. 1999;34:106–114. PubMed PMC

Booysen M.J., West N., Constantinou D. P-85 The relationships of eccentric and concentric isokinetic strength with sprinting speed in male sub-elite footballers. Br. J. Sports Med. 2016;50:A79. doi: 10.1136/bjsports-2016-097120.138. DOI

Cotte T., Chatard J.C. Isokinetic strength and sprint times in English Premier League football players. Biol. Sport. 2011;28:89–94. doi: 10.5604/942736. DOI

Wollin M., Thorborg K., Pizzari T. The acute effect of match play on hamstring strength and lower limb flexibility in elite youth football players. Scand. J. Med. Sci. Sports. 2017;27:282–288. doi: 10.1111/sms.12655. PubMed DOI

Sangnier S., Tourny-Chollet C. Comparison of the decrease in strength between hamstrings and quadriceps during isokinetic fatigue testing in semiprofessional soccer players. Int. J. Sports Med. 2007;28:952–957. doi: 10.1055/s-2007-964981. PubMed DOI

Small K., McNaughton L., Greig M., Lovell R. The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J. Sci. Med. Sport. 2010;13:120–125. doi: 10.1016/j.jsams.2008.08.005. PubMed DOI

Delextrat A., Gregory J., Cohen D. The use of the functional H:Q ratio to assess fatigue in soccer. Int. J. Sports Med. 2010;31:192–197. doi: 10.1055/s-0029-1243642. PubMed DOI

Lehnert M., De Ste Croix M., Xaverova Z., Botek M., Varekova R., Zaatar A., Lastovicka O., Stastny P. Changes in injury risk mechanisms after soccer-specific fatigue in male youth soccer players. J. Hum. Kinet. 2018;62:33–42. doi: 10.1515/hukin-2017-0157. PubMed DOI PMC

Lehnert M., De Ste Croix M., Zaatar A., Hughes J., Varekova R., Lastovicka O. Muscular and neuromuscular control following soccer-specific exercise in male youth: Changes in injury risk mechanisms. Scand. J. Med. Sci. Sports. 2017;27:975–982. doi: 10.1111/sms.12705. PubMed DOI

Toumi H., Poumarat G., Best T.M., Martin A., Fairclough J., Benjamin M. Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise. Appl. Physiol. Nutr. Metab. 2006;31:565–572. doi: 10.1139/h06-034. PubMed DOI

Shultz S.J., Perrin D.H. Using surface electromyography to assess sex differences in neuromuscular response characteristics. J. Athl. Train. 1999;34:165–176. PubMed PMC

De Luca C.J. The use of surface electromyography in biomechanics. J. Appl. Biomech. 1997;13:135–163. doi: 10.1123/jab.13.2.135. DOI

Thongpanja S., Phinyomark A., Phukpattaranont P., Limsakul C. Mean and median frequency of EMG signal to determine muscle force based on time dependent power spectrum. Elektron. Elektrotech. 2013;19:51–56. doi: 10.5755/j01.eee.19.3.3697. DOI

De Ste Croix M., Lehnert M., Maixnerova E., Zaatar A., Svoboda Z., Botek M., Varekova R., Stastny P. Does maturation influence neuromuscular performance and muscle damage after competitive match-play in youth male soccer players? Eur. J. Sport Sci. 2019;19:1130–1139. doi: 10.1080/17461391.2019.1575913. PubMed DOI

Riemann B.L., Myers J.B., Lephart S.M. Comparison of the ankle, knee, hip, and trunk corrective action shown during single-leg stance on firm, foam, and multiaxial surfaces. Arch. Phys. Med. Rehabil. 2003;84:90–95. doi: 10.1053/apmr.2003.50004. PubMed DOI

Oliver J.L., De Ste Croix M.B.A., Lloyd R.S., Williams C.A. Altered neuromuscular control of leg stiffness following soccer-specific exercise. Eur. J. Appl. Physiol. 2014;114:2241–2249. doi: 10.1007/s00421-014-2949-z. PubMed DOI

Lehnert M., De Ste Croix M., Šťastný P., Maixnerová E., Zaatar A., Botek M., Vařeková R., Hůlka K., Petr M., Elfmark M., et al. The Influence of Fatigue on Injury Risk in Male Youth Soccer. Palacky University Olomouc; Olomouc, Czech Republic: 2019. p. 182. DOI

Lloyd R.S., Oliver J.L., Hughes M.G., Williams C.A. Reliability and validity of field-based measures of leg stiffness and reactive strength index in youths. J. Sports Sci. 2009;27:1565–1573. doi: 10.1080/02640410903311572. PubMed DOI

Flanagan E.P., Comyns T.M. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Str. Cond. J. 2008;30:32–38. doi: 10.1519/SSC.0b013e318187e25b. DOI

Young W. Laboratory strength assessment of athletes. New Stud. Athl. 1995;10:88–96.

Raschner C., Platzer H.P., Patterson C., Werner I., Huber R., Hildebrandt C. The relationship between ACL injuries and physical fitness in young competitive ski racers: A 10-year longitudinal study. Br. J. Sports Med. 2012;46:1065–1071. doi: 10.1136/bjsports-2012-091050. PubMed DOI

Parkkari J., Pasanen K., Manila V.M., Kannus P., Rimpelä A. The risk for a cruciate ligament injury of the knee in adolescents and young adults: A population-based cohort study of 46 500 people with a 9 year follow-up. Br. J. Sports Med. 2008;42:422–426. doi: 10.1136/bjsm.2008.046185. PubMed DOI

Flanagan E.P., Ebben W.P., Jensen R.L. Reliability of the reactive strength index and time to stabilization during depth jumps. J. Strength Cond. Res. 2008;22:1677–1682. doi: 10.1519/JSC.0b013e318182034b. PubMed DOI

Van Der Sluis A., Elferink-Gemser M.T., Coelho-E-Silva M.J., Nijboer J.A., Brink M.S., Visscher C. Sport injuries aligned to peak height velocity in talented pubertal soccer players. Int. J. Sports Med. 2014;35:351–355. doi: 10.1055/s-0033-1349874. PubMed DOI

Rumpf M.C., Cronin J. Injury incidence, body site, and severity in soccer players aged 6–18 years: Implications for injury prevention. Strength Cond. J. 2012;34:20–31. doi: 10.1519/SSC.0b013e31821a9833. DOI

Shea K.G., Pfeiffer R., Jo H.W., Curtin M., Apel P.J. Anterior cruciate ligament injury in pediatric and adolescent soccer players: An analysis of insurance data. J. Pediatr. Orthop. 2004;24:623–628. doi: 10.1097/01241398-200411000-00005. PubMed DOI

De Ste Croix M.B.A., Priestley A.M., Lloyd R.S., Oliver J.L. ACL injury risk in elite female youth soccer: Changes in neuromuscular control of the knee following soccer-specific fatigue. Scand. J. Med. Sci. Sports. 2015;25:e531–e538. doi: 10.1111/sms.12355. PubMed DOI

De Ste Croix M.B.A. Protect Her Knees—Exploring the Role of Football Specific Fatigue on Dynamic Knee Stability in Female Youth Football Players. UEFA; Basel, Switzerland: 2012. Project Report funded by UEFA Research Grant programme.

Cohen R., Mitchell C., Dotan R., Gabriel D., Klentrou P., Falk B. Do neuromuscular adaptations occur in endurance-trained boys and men? Appl. Physiol. Nutr. Metab. 2010;35:471–479. doi: 10.1139/H10-031. PubMed DOI PMC

Oliver J.L., Smith P.M. Neural control of leg stiffness during hopping in boys and men. J. Electromyogr. Kinesiol. 2010;20:973–979. doi: 10.1016/j.jelekin.2010.03.011. PubMed DOI

Mirwald R.L., Baxter-Jones A.D.G., Bailey D.A., Beunen G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002;34:689–694. PubMed

Dirnberger J., Wiesinger H.P., Kösters A., Müller E. Reproducibility for isometric and isokinetic maximum knee flexion and extension measurements using the IsoMed 2000-dynamometer. Isokinet. Exerc. Sci. 2012;20:149–153. doi: 10.3233/IES-2012-0451. DOI

De Araujo Ribeiro Alvares J.B., Rodrigues R., de Azevedo Franke R., da Silva B.G.C., Pinto R.S., Vaz M.A., Baroni B.M. Inter-machine reliability of the Biodex and Cybex isokinetic dynamometers for knee flexor/extensor isometric, concentric and eccentric tests. Phys. Ther. Sport. 2015;16:59–65. doi: 10.1016/j.ptsp.2014.04.004. PubMed DOI

Sleivert G.G., Wenger H.A. Reliability of measuring isometric and isokinetic peak torque, rate of torque development, integrated electromyography, and tibial nerve conduction velocity. Arch. Phys. Med. Rehabil. 1994;75:1315–1321. doi: 10.1016/0003-9993(94)90279-8. PubMed DOI

Konrad P. The ABC of EMG: A Practical Introduction to Kinesiological Electromyography. Noraxon; Scottsdale, AZ, USA: 2005. p. 61.

Dalleau G., Belli A., Viale F., Lacour J.R., Bourdin M. A simple method for field measurements of leg stiffness in hopping. Int. J. Sports Med. 2004;25:170–176. doi: 10.1055/s-2003-45252. PubMed DOI

De Ste Croix M.B.A., Hughes J.D., Lloyd R.S., Oliver J.L., Read P.J. Leg stiffness in female soccer players: Intersession reliability and the fatiguing effects of soccer-specific exercise. J. Strength Cond. Res. 2017;31:3052–3058. doi: 10.1519/JSC.0000000000001715. PubMed DOI

Hopkins W.G. Spreadsheets for analysis of controlled trials, crossovers and time series. Sportscience. 2017;21:1–4.

Greenland S. Valid P-Values behave exactly as they should: Some misleading criticisms of P-Values and their resolution with S-Values. Am. Stat. 2019;73:106–114. doi: 10.1080/00031305.2018.1529625. DOI

Hopkins W.G., Marshall S.W., Batterham A.M., Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009;41:3–12. doi: 10.1249/MSS.0b013e31818cb278. PubMed DOI

Hopkins W.G. A spreadsheet for combining outcomes from several subject groups. Sportscience. 2006;10:46–50.

Rosenthal R. Parametric measures of effect size. In: Cooper H., Hedges L.V., editors. The Handbook of Research Synthesis. Russel Sage Foundation; New York, NY, USA: 1994. pp. 231–244.

Hawkins R.D., Hulse M.A., Wilkinson C., Hodson A., Gibson M. The association football medical research programme: An audit of injuries in professional football. Br. J. Sports Med. 2001;35:43–47. doi: 10.1136/bjsm.35.1.43. PubMed DOI PMC

Mair S.D., Seaber A.V., Glisson R.R., Garrett W.E., Jr. The role of fatigue in susceptibility to acute muscle strain injury. Am. J. Sports Med. 1996;24:137–143. doi: 10.1177/036354659602400203. PubMed DOI

Coombs R., Garbutt G. Developments in the use of the hamstring/quadriceps ratio for the assessment of muscle balance. J. Sports Sci. Med. 2002;1:56–62. PubMed PMC

Baroni B.M., Ruas C.V., Ribeiro-Alvares J.B., Pinto R.S. Hamstring-to-quadriceps torque ratios of professional male soccer players: A systematic review. J. Strength Cond. Res. 2020;34:2609. doi: 10.1519/JSC.0000000000002609. PubMed DOI

Camarda S.R.D.A., Denadai B.S. Does muscle imbalance affect fatigue after soccer specific intermittent protocol? J. Sci. Med. Sport. 2012;15:355–360. doi: 10.1016/j.jsams.2011.11.257. PubMed DOI

Ford K.R., Myer G.D., Hewett T.E. Longitudinal effects of maturation on lower extremity joint stiffness in adolescent athletes. Am. J. Sports Med. 2010;38:1829–1837. doi: 10.1177/0363546510367425. PubMed DOI PMC

Brughelli M., Cronin J. A review of research on the mechanical stiffness in running and jumping: Methodology and implications. Scand. J. Med. Sci. Sports. 2008;18:417–426. doi: 10.1111/j.1600-0838.2008.00769.x. PubMed DOI

Komi P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000;33:1197–1206. doi: 10.1016/S0021-9290(00)00064-6. PubMed DOI

Hewett T.E., Myer G.D., Ford K.R. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am. J. Sports Med. 2006;34:299–311. doi: 10.1177/0363546505284183. PubMed DOI

Lloyd R.S., Oliver J.L., Hughes M.G., Williams C.A. Age-related differences in the neural regulation of stretch-shortening cycle activities in male youths during maximal and sub-maximal hopping. J. Electromyogr. Kinesiol. 2012;22:37–43. doi: 10.1016/j.jelekin.2011.09.008. PubMed DOI

Campa F., Silva A.M., Iannuzzi V., Mascherini G., Benedetti L., Toselli S. The role of somatic maturation on bioimpedance patterns and body composition in male elite youth soccer players. Int. J. Environ. Res. Public Health. 2019;16:4711. doi: 10.3390/ijerph16234711. PubMed DOI PMC

Toselli S., Marini E., Maietta Latessa P., Benedetti L., Campa F. Maturity related differences in body composition assessed by classic and specific bioimpedance vector analysis among male elite youth soccer players. Int. J. Environ. Res. Public Health. 2020;17:729. doi: 10.3390/ijerph17030729. PubMed DOI PMC

Barrett S., Guard A., Lovell R.J. Elite-youth and university-level versions of SAFT90 simulate the internal and external loads of competitive soccer. In: Nunome H., Drust B., Dawson B., editors. Science and Football VII. Routledge; Abingdon, UK: 2013. pp. 95–100.

Botek M., Krejčí J., McKune A.J., Klimešová I. Somatic, endurance performance and heart rate variability profiles of professional soccer players grouped according to age. J. Hum. Kinet. 2016;54:65–74. doi: 10.1515/hukin-2016-0035. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...