Effect of a Simulated Match on Lower Limb Neuromuscular Performance in Youth Footballers-A Two Year Longitudinal Study
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33227935
PubMed Central
PMC7699215
DOI
10.3390/ijerph17228579
PII: ijerph17228579
Knihovny.cz E-resources
- Keywords
- EMG, isokinetic, leg stiffness, reactive strength, simulated match-play,
- MeSH
- Lower Extremity * physiology MeSH
- Soccer * MeSH
- Muscle, Skeletal * physiology MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Adolescent MeSH
- Muscle Strength * physiology MeSH
- Check Tag
- Humans MeSH
- Adolescent MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The aim of this study was to explore the effects of simulated soccer match play on neuromuscular performance in adolescent players longitudinally over a two-year period. Eleven players completed all measurements in both years of the study (1st year: age 16.0 ± 0.4 y; stature 178.8 ± 6.4 cm; mass 67.5 ± 7.8 kg; maturity-offset 2.24 ± 0.71 y). There was a significant reduction in hamstring strength after simulated match by the soccer-specific aerobic field test (SAFT90), with four out of eight parameters compromised in U16s (4.7-7.8% decrease) and six in the U17s (3.1-15.4%). In the U17s all of the concentric quadriceps strength parameters were decreased (3.7-8.6%) as well as the vastus lateralis and semitendinosus firing frequency (26.9-35.4%). In both ages leg stiffness decreased (9.2-10.2%) and reactive strength increased pre to post simulated match (U16 8.0%; U17 2.5%). A comparison of changes between age groups did not show any differences. This study demonstrates a decrease in neuromuscular performance post simulated match play in both ages but observed changes were not age dependent.
Faculty of Physical Culture Palacky University Olomouc 771 11 Olomouc Czech Republic
Faculty of Physical Education and Sport Charles University 162 52 Prague Czech Republic
Institute of Physical Education Kazimierz Wielki University in Bydgoszcz 85 064 Bydgoszcz Poland
School of Sport and Exercise University of Gloucestershire Gloucester GL50 2RH UK
See more in PubMed
Los Arcos Larumbe A., Mendiguchia J., Yanci J. Specificity of jumping, acceleration and quick change-of-direction motor abilities in soccer players. Kinesiology. 2017;49:22–29. doi: 10.26582/k.49.1.12. DOI
Malý T., Zahálka F., Malá L., Teplan J. Profile, correlation and structure of speed in youth elite soccer players. J. Hum. Kinet. 2014;40:149–159. doi: 10.2478/hukin-2014-0017. PubMed DOI PMC
Stølen T., Chamari K., Castagna C., Wisløff U. Physiology of soccer: An update. Sports Med. 2005;35:501–536. doi: 10.2165/00007256-200535060-00004. PubMed DOI
Bastos F.N., Vanderlei F.M., Vanderlei L.C.M., Júnior J.N., Pastre C.M. Investigation of characteristics and risk factors of sports injuries in young soccer players: A retrospective study. Int. Arch. Med. 2013;6:14. doi: 10.1186/1755-7682-6-14. PubMed DOI PMC
Ekstrand J., Hägglund M., Waldén M. Injury incidence and injury patterns in professional football: The UEFA injury study. Br. J. Sports Med. 2011;45:553–558. doi: 10.1136/bjsm.2009.060582. PubMed DOI
Read P.J., Oliver J.L., De Ste Croix M.B.A., Myer G.D., Lloyd R.S. An audit of injuries in six English professional soccer academies. J. Sports Sci. 2018;36:1542–1548. doi: 10.1080/02640414.2017.1402535. PubMed DOI
Ekstrand J., Waldén M., Hägglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. Br. J. Sports Med. 2016;50:731–737. doi: 10.1136/bjsports-2015-095359. PubMed DOI
Waldén M., Hägglund M., Werner J., Ekstrand J. The epidemiology of anterior cruciate ligament injury in football (soccer): A review of the literature from a gender-related perspective. Knee Surg. Sports Traumatol. Arthrosc. 2011;19:3–10. doi: 10.1007/s00167-010-1172-7. PubMed DOI
Pfirrmann D., Herbst M., Ingelfinger P., Simon P., Tug S. Analysis of injury incidences in male professional adult and elite youth soccer players: A systematic review. J. Athl. Train. 2016;51:410–424. doi: 10.4085/1062-6050-51.6.03. PubMed DOI PMC
Waldén M., Hägglund M., Magnusson H., Ekstrand J. ACL injuries in men’s professional football: A 15-year prospective study on time trends and return-to-play rates reveals only 65% of players still play at the top level 3 years after ACL rupture. Br. J. Sports Med. 2016;50:744–750. doi: 10.1136/bjsports-2015-095952. PubMed DOI
Greig M. The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am. J. Sports Med. 2008;36:1403–1409. doi: 10.1177/0363546508314413. PubMed DOI
Padua D.A., Arnold B.L., Perrin D.H., Gansneder B.M., Carcia C.R., Granata K.P. Fatigue, vertical leg stiffness, and stiffness control strategies in males and females. J. Athl. Train. 2006;41:294–304. PubMed PMC
Maly T., Sugimoto D., Izovska J., Zahalka F., Mala L. Effect of muscular strength, asymmetries and fatigue on kicking performance in soccer players. Int. J. Sports Med. 2018;39:297–303. doi: 10.1055/s-0043-123648. PubMed DOI
Freckleton G., Pizzari T. Risk factors for hamstring muscle strain injury in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2013;47:351–358. doi: 10.1136/bjsports-2011-090664. PubMed DOI
Fitzpatrick J.F., Akenhead R., Russell M., Hicks K.M., Hayes P.R. Sensitivity and reproducibility of a fatigue response in elite youth football players. Sci. Med. Footb. 2019;3:214–220. doi: 10.1080/24733938.2019.1571685. DOI
Huygaerts S., Cos F., Cohen D.D., Calleja-González J., Guitart M., Blazevich A.J., Alcaraz P.E. Mechanisms of hamstring strain injury: Interactions between fatigue, muscle activation and function. Sports. 2020;8:65. doi: 10.3390/sports8050065. PubMed DOI PMC
Maly T., Zahalka F., Mala L. Unilateral and ipsilateral strength asymmetries in elite youth soccer players with respect to muscle group and limb dominance. Int. J. Morphol. 2016;34:1339–1344. doi: 10.4067/S0717-95022016000400027. DOI
McCall A., Carling C., Davison M., Nedelec M., Le Gall F., Berthoin S., Dupont G. Injury risk factors, screening tests and preventative strategies: A systematic review of the evidence that underpins the perceptions and practices of 44 football (soccer) teams from various premier leagues. Br. J. Sports Med. 2015;49:583–589. doi: 10.1136/bjsports-2014-094104. PubMed DOI PMC
Hughes G., Watkins J. A risk-factor model for anterior cruciate ligament injury. Sports Med. 2006;36:411–428. doi: 10.2165/00007256-200636050-00004. PubMed DOI
Osternig L.R. Assessing human performance. In: Brown E., editor. Isokinetics in Human Performance. Human Kinetics; Champaign, IL, USA: 2000. pp. 77–96.
Alentorn-Geli E., Myer G.D., Silvers H.J., Samitier G., Romero D., Lázaro-Haro C., Cugat R. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surg. Sports Traumatol. Arthrosc. 2009;17:705–729. doi: 10.1007/s00167-009-0813-1. PubMed DOI
Dauty M., Potiron-Josse M., Rochcongar P. Identification of previous hamstring muscle injury by isokinetic concentric and eccentric torque measurement in elite soccer player. Isokinet. Exerc. Sci. 2003;11:139–144. doi: 10.3233/IES-2003-0140. DOI
Chappell J.D., Creighton R.A., Giuliani C., Yu B., Garrett W.E. Kinematics and electromyography of landing preparation in vertical stop-jump: Risks for noncontact anterior cruciate ligament injury. Am. J. Sports Med. 2007;35:235–241. doi: 10.1177/0363546506294077. PubMed DOI
Woods C., Hawkins R.D., Maltby S., Hulse M., Thomas A., Hodson A. The Football Association Medical Research Programme: An audit of injuries in professional football—Analysis of hamstring injuries. Br. J. Sports Med. 2004;38:36–41. doi: 10.1136/bjsm.2002.002352. PubMed DOI PMC
Rahnama N., Reilly T., Lees A., Graham-Smith P. Muscle fatigue induced by exercise simulating the work rate of competitive soccer. J. Sports Sci. 2003;21:933–942. doi: 10.1080/0264041031000140428. PubMed DOI
Proske U., Morgan D.L., Brockett C.L., Percival P. Identifying athletes at risk of hamstring strains and how to protect them. Clin. Exp. Pharmacol. Physiol. 2004;31:546–550. doi: 10.1111/j.1440-1681.2004.04028.x. PubMed DOI
Croisier J.L., Ganteaume S., Binet J., Genty M., Ferret J.M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sports Med. 2008;36:1469–1475. doi: 10.1177/0363546508316764. PubMed DOI
Verrall G.M., Slavotinek J.P., Barnes P.G., Fon G.T., Spriggins A.J. Clinical risk factors for hamstring muscle strain injury: A prospective study with correlation of injury by magnetic resonance imaging. Br. J. Sports Med. 2001;35:435–439. doi: 10.1136/bjsm.35.6.435. PubMed DOI PMC
Melnyk M., Gollhofer A. Submaximal fatigue of the hamstrings impairs specific reflex components and knee stability. Knee Surg. Sports Traumatol. Arthrosc. 2007;15:525–532. doi: 10.1007/s00167-006-0226-3. PubMed DOI
Rozzi S.L., Lephart S.M., Fu F.H. Effects of muscular fatigue on knee joint laxity and neuromuscular characteristics of male and female athletes. J. Athl. Train. 1999;34:106–114. PubMed PMC
Booysen M.J., West N., Constantinou D. P-85 The relationships of eccentric and concentric isokinetic strength with sprinting speed in male sub-elite footballers. Br. J. Sports Med. 2016;50:A79. doi: 10.1136/bjsports-2016-097120.138. DOI
Cotte T., Chatard J.C. Isokinetic strength and sprint times in English Premier League football players. Biol. Sport. 2011;28:89–94. doi: 10.5604/942736. DOI
Wollin M., Thorborg K., Pizzari T. The acute effect of match play on hamstring strength and lower limb flexibility in elite youth football players. Scand. J. Med. Sci. Sports. 2017;27:282–288. doi: 10.1111/sms.12655. PubMed DOI
Sangnier S., Tourny-Chollet C. Comparison of the decrease in strength between hamstrings and quadriceps during isokinetic fatigue testing in semiprofessional soccer players. Int. J. Sports Med. 2007;28:952–957. doi: 10.1055/s-2007-964981. PubMed DOI
Small K., McNaughton L., Greig M., Lovell R. The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J. Sci. Med. Sport. 2010;13:120–125. doi: 10.1016/j.jsams.2008.08.005. PubMed DOI
Delextrat A., Gregory J., Cohen D. The use of the functional H:Q ratio to assess fatigue in soccer. Int. J. Sports Med. 2010;31:192–197. doi: 10.1055/s-0029-1243642. PubMed DOI
Lehnert M., De Ste Croix M., Xaverova Z., Botek M., Varekova R., Zaatar A., Lastovicka O., Stastny P. Changes in injury risk mechanisms after soccer-specific fatigue in male youth soccer players. J. Hum. Kinet. 2018;62:33–42. doi: 10.1515/hukin-2017-0157. PubMed DOI PMC
Lehnert M., De Ste Croix M., Zaatar A., Hughes J., Varekova R., Lastovicka O. Muscular and neuromuscular control following soccer-specific exercise in male youth: Changes in injury risk mechanisms. Scand. J. Med. Sci. Sports. 2017;27:975–982. doi: 10.1111/sms.12705. PubMed DOI
Toumi H., Poumarat G., Best T.M., Martin A., Fairclough J., Benjamin M. Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise. Appl. Physiol. Nutr. Metab. 2006;31:565–572. doi: 10.1139/h06-034. PubMed DOI
Shultz S.J., Perrin D.H. Using surface electromyography to assess sex differences in neuromuscular response characteristics. J. Athl. Train. 1999;34:165–176. PubMed PMC
De Luca C.J. The use of surface electromyography in biomechanics. J. Appl. Biomech. 1997;13:135–163. doi: 10.1123/jab.13.2.135. DOI
Thongpanja S., Phinyomark A., Phukpattaranont P., Limsakul C. Mean and median frequency of EMG signal to determine muscle force based on time dependent power spectrum. Elektron. Elektrotech. 2013;19:51–56. doi: 10.5755/j01.eee.19.3.3697. DOI
De Ste Croix M., Lehnert M., Maixnerova E., Zaatar A., Svoboda Z., Botek M., Varekova R., Stastny P. Does maturation influence neuromuscular performance and muscle damage after competitive match-play in youth male soccer players? Eur. J. Sport Sci. 2019;19:1130–1139. doi: 10.1080/17461391.2019.1575913. PubMed DOI
Riemann B.L., Myers J.B., Lephart S.M. Comparison of the ankle, knee, hip, and trunk corrective action shown during single-leg stance on firm, foam, and multiaxial surfaces. Arch. Phys. Med. Rehabil. 2003;84:90–95. doi: 10.1053/apmr.2003.50004. PubMed DOI
Oliver J.L., De Ste Croix M.B.A., Lloyd R.S., Williams C.A. Altered neuromuscular control of leg stiffness following soccer-specific exercise. Eur. J. Appl. Physiol. 2014;114:2241–2249. doi: 10.1007/s00421-014-2949-z. PubMed DOI
Lehnert M., De Ste Croix M., Šťastný P., Maixnerová E., Zaatar A., Botek M., Vařeková R., Hůlka K., Petr M., Elfmark M., et al. The Influence of Fatigue on Injury Risk in Male Youth Soccer. Palacky University Olomouc; Olomouc, Czech Republic: 2019. p. 182. DOI
Lloyd R.S., Oliver J.L., Hughes M.G., Williams C.A. Reliability and validity of field-based measures of leg stiffness and reactive strength index in youths. J. Sports Sci. 2009;27:1565–1573. doi: 10.1080/02640410903311572. PubMed DOI
Flanagan E.P., Comyns T.M. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Str. Cond. J. 2008;30:32–38. doi: 10.1519/SSC.0b013e318187e25b. DOI
Young W. Laboratory strength assessment of athletes. New Stud. Athl. 1995;10:88–96.
Raschner C., Platzer H.P., Patterson C., Werner I., Huber R., Hildebrandt C. The relationship between ACL injuries and physical fitness in young competitive ski racers: A 10-year longitudinal study. Br. J. Sports Med. 2012;46:1065–1071. doi: 10.1136/bjsports-2012-091050. PubMed DOI
Parkkari J., Pasanen K., Manila V.M., Kannus P., Rimpelä A. The risk for a cruciate ligament injury of the knee in adolescents and young adults: A population-based cohort study of 46 500 people with a 9 year follow-up. Br. J. Sports Med. 2008;42:422–426. doi: 10.1136/bjsm.2008.046185. PubMed DOI
Flanagan E.P., Ebben W.P., Jensen R.L. Reliability of the reactive strength index and time to stabilization during depth jumps. J. Strength Cond. Res. 2008;22:1677–1682. doi: 10.1519/JSC.0b013e318182034b. PubMed DOI
Van Der Sluis A., Elferink-Gemser M.T., Coelho-E-Silva M.J., Nijboer J.A., Brink M.S., Visscher C. Sport injuries aligned to peak height velocity in talented pubertal soccer players. Int. J. Sports Med. 2014;35:351–355. doi: 10.1055/s-0033-1349874. PubMed DOI
Rumpf M.C., Cronin J. Injury incidence, body site, and severity in soccer players aged 6–18 years: Implications for injury prevention. Strength Cond. J. 2012;34:20–31. doi: 10.1519/SSC.0b013e31821a9833. DOI
Shea K.G., Pfeiffer R., Jo H.W., Curtin M., Apel P.J. Anterior cruciate ligament injury in pediatric and adolescent soccer players: An analysis of insurance data. J. Pediatr. Orthop. 2004;24:623–628. doi: 10.1097/01241398-200411000-00005. PubMed DOI
De Ste Croix M.B.A., Priestley A.M., Lloyd R.S., Oliver J.L. ACL injury risk in elite female youth soccer: Changes in neuromuscular control of the knee following soccer-specific fatigue. Scand. J. Med. Sci. Sports. 2015;25:e531–e538. doi: 10.1111/sms.12355. PubMed DOI
De Ste Croix M.B.A. Protect Her Knees—Exploring the Role of Football Specific Fatigue on Dynamic Knee Stability in Female Youth Football Players. UEFA; Basel, Switzerland: 2012. Project Report funded by UEFA Research Grant programme.
Cohen R., Mitchell C., Dotan R., Gabriel D., Klentrou P., Falk B. Do neuromuscular adaptations occur in endurance-trained boys and men? Appl. Physiol. Nutr. Metab. 2010;35:471–479. doi: 10.1139/H10-031. PubMed DOI PMC
Oliver J.L., Smith P.M. Neural control of leg stiffness during hopping in boys and men. J. Electromyogr. Kinesiol. 2010;20:973–979. doi: 10.1016/j.jelekin.2010.03.011. PubMed DOI
Mirwald R.L., Baxter-Jones A.D.G., Bailey D.A., Beunen G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002;34:689–694. PubMed
Dirnberger J., Wiesinger H.P., Kösters A., Müller E. Reproducibility for isometric and isokinetic maximum knee flexion and extension measurements using the IsoMed 2000-dynamometer. Isokinet. Exerc. Sci. 2012;20:149–153. doi: 10.3233/IES-2012-0451. DOI
De Araujo Ribeiro Alvares J.B., Rodrigues R., de Azevedo Franke R., da Silva B.G.C., Pinto R.S., Vaz M.A., Baroni B.M. Inter-machine reliability of the Biodex and Cybex isokinetic dynamometers for knee flexor/extensor isometric, concentric and eccentric tests. Phys. Ther. Sport. 2015;16:59–65. doi: 10.1016/j.ptsp.2014.04.004. PubMed DOI
Sleivert G.G., Wenger H.A. Reliability of measuring isometric and isokinetic peak torque, rate of torque development, integrated electromyography, and tibial nerve conduction velocity. Arch. Phys. Med. Rehabil. 1994;75:1315–1321. doi: 10.1016/0003-9993(94)90279-8. PubMed DOI
Konrad P. The ABC of EMG: A Practical Introduction to Kinesiological Electromyography. Noraxon; Scottsdale, AZ, USA: 2005. p. 61.
Dalleau G., Belli A., Viale F., Lacour J.R., Bourdin M. A simple method for field measurements of leg stiffness in hopping. Int. J. Sports Med. 2004;25:170–176. doi: 10.1055/s-2003-45252. PubMed DOI
De Ste Croix M.B.A., Hughes J.D., Lloyd R.S., Oliver J.L., Read P.J. Leg stiffness in female soccer players: Intersession reliability and the fatiguing effects of soccer-specific exercise. J. Strength Cond. Res. 2017;31:3052–3058. doi: 10.1519/JSC.0000000000001715. PubMed DOI
Hopkins W.G. Spreadsheets for analysis of controlled trials, crossovers and time series. Sportscience. 2017;21:1–4.
Greenland S. Valid P-Values behave exactly as they should: Some misleading criticisms of P-Values and their resolution with S-Values. Am. Stat. 2019;73:106–114. doi: 10.1080/00031305.2018.1529625. DOI
Hopkins W.G., Marshall S.W., Batterham A.M., Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009;41:3–12. doi: 10.1249/MSS.0b013e31818cb278. PubMed DOI
Hopkins W.G. A spreadsheet for combining outcomes from several subject groups. Sportscience. 2006;10:46–50.
Rosenthal R. Parametric measures of effect size. In: Cooper H., Hedges L.V., editors. The Handbook of Research Synthesis. Russel Sage Foundation; New York, NY, USA: 1994. pp. 231–244.
Hawkins R.D., Hulse M.A., Wilkinson C., Hodson A., Gibson M. The association football medical research programme: An audit of injuries in professional football. Br. J. Sports Med. 2001;35:43–47. doi: 10.1136/bjsm.35.1.43. PubMed DOI PMC
Mair S.D., Seaber A.V., Glisson R.R., Garrett W.E., Jr. The role of fatigue in susceptibility to acute muscle strain injury. Am. J. Sports Med. 1996;24:137–143. doi: 10.1177/036354659602400203. PubMed DOI
Coombs R., Garbutt G. Developments in the use of the hamstring/quadriceps ratio for the assessment of muscle balance. J. Sports Sci. Med. 2002;1:56–62. PubMed PMC
Baroni B.M., Ruas C.V., Ribeiro-Alvares J.B., Pinto R.S. Hamstring-to-quadriceps torque ratios of professional male soccer players: A systematic review. J. Strength Cond. Res. 2020;34:2609. doi: 10.1519/JSC.0000000000002609. PubMed DOI
Camarda S.R.D.A., Denadai B.S. Does muscle imbalance affect fatigue after soccer specific intermittent protocol? J. Sci. Med. Sport. 2012;15:355–360. doi: 10.1016/j.jsams.2011.11.257. PubMed DOI
Ford K.R., Myer G.D., Hewett T.E. Longitudinal effects of maturation on lower extremity joint stiffness in adolescent athletes. Am. J. Sports Med. 2010;38:1829–1837. doi: 10.1177/0363546510367425. PubMed DOI PMC
Brughelli M., Cronin J. A review of research on the mechanical stiffness in running and jumping: Methodology and implications. Scand. J. Med. Sci. Sports. 2008;18:417–426. doi: 10.1111/j.1600-0838.2008.00769.x. PubMed DOI
Komi P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000;33:1197–1206. doi: 10.1016/S0021-9290(00)00064-6. PubMed DOI
Hewett T.E., Myer G.D., Ford K.R. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am. J. Sports Med. 2006;34:299–311. doi: 10.1177/0363546505284183. PubMed DOI
Lloyd R.S., Oliver J.L., Hughes M.G., Williams C.A. Age-related differences in the neural regulation of stretch-shortening cycle activities in male youths during maximal and sub-maximal hopping. J. Electromyogr. Kinesiol. 2012;22:37–43. doi: 10.1016/j.jelekin.2011.09.008. PubMed DOI
Campa F., Silva A.M., Iannuzzi V., Mascherini G., Benedetti L., Toselli S. The role of somatic maturation on bioimpedance patterns and body composition in male elite youth soccer players. Int. J. Environ. Res. Public Health. 2019;16:4711. doi: 10.3390/ijerph16234711. PubMed DOI PMC
Toselli S., Marini E., Maietta Latessa P., Benedetti L., Campa F. Maturity related differences in body composition assessed by classic and specific bioimpedance vector analysis among male elite youth soccer players. Int. J. Environ. Res. Public Health. 2020;17:729. doi: 10.3390/ijerph17030729. PubMed DOI PMC
Barrett S., Guard A., Lovell R.J. Elite-youth and university-level versions of SAFT90 simulate the internal and external loads of competitive soccer. In: Nunome H., Drust B., Dawson B., editors. Science and Football VII. Routledge; Abingdon, UK: 2013. pp. 95–100.
Botek M., Krejčí J., McKune A.J., Klimešová I. Somatic, endurance performance and heart rate variability profiles of professional soccer players grouped according to age. J. Hum. Kinet. 2016;54:65–74. doi: 10.1515/hukin-2016-0035. PubMed DOI PMC