Ligninolytic Enzyme Production and Decolorization Capacity of Synthetic Dyes by Saprotrophic White Rot, Brown Rot, and Litter Decomposing Basidiomycetes

. 2020 Nov 19 ; 6 (4) : . [epub] 20201119

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33228232

An extensive screening of saprotrophic Basidiomycetes causing white rot (WR), brown rot (BR), or litter decomposition (LD) for the production of laccase and Mn-peroxidase (MnP) and decolorization of the synthetic dyes Orange G and Remazol Brilliant Blue R (RBBR) was performed. The study considered in total 150 strains belonging to 77 species. The aim of this work was to compare the decolorization and ligninolytic capacity among different ecophysiological and taxonomic groups of Basidiomycetes. WR strains decolorized both dyes most efficiently; high decolorization capacity was also found in some LD fungi. The enzyme production was recorded in all three ecophysiology groups, but to a different extent. All WR and LD fungi produced laccase, and the majority of them also produced MnP. The strains belonging to BR lacked decolorization capabilities. None of them produced MnP and the production of laccase was either very low or absent. The most efficient decolorization of both dyes and the highest laccase production was found among the members of the orders Polyporales and Agaricales. The strains with high MnP activity occurred across almost all fungal orders (Polyporales, Agaricales, Hymenochaetales, and Russulales). Synthetic dye decolorization by fungal strains was clearly related to their production of ligninolytic enzymes and both properties were determined by the interaction of their ecophysiology and taxonomy, with a more relevant role of ecophysiology. Our screening revealed 12 strains with high decolorization capacity (9 WR and 3 LD), which could be promising for further biotechnological utilization.

Zobrazit více v PubMed

Lee A.H., Lee H., Heo Y.M., Lim Y.W., Kim C.-M., Kim G.-H., Chang W., Kim J.-J. A proposed stepwise screening framework for the selection of polycyclic aromatic hydrocarbon (PAH)-degrading white rot fungi. Bioprocess Biosyst. Eng. 2020;43:767–783. doi: 10.1007/s00449-019-02272-w. PubMed DOI

Sen S.K., Raut S., Bandyopadhyay P., Raut S. Fungal decolouration and degradation of azo dyes: A review. Fungal Biol. Rev. 2016;30:112–133. doi: 10.1016/j.fbr.2016.06.003. DOI

Baldrián P. Chapter 2 Enzymes of Saprotrophic Basidiomycetes. Volume 28. Elsevier; Amsterdam, The Netherlands: 2008. pp. 19–41.

Kjøller A., Struwe S. Enzymes in the Environment. Marcel Dekker; New York, NY, USA: 2003. Fungal Communities, Succession, Enzymes, and Decomposition; pp. 267–284.

Van Der Wal A., Geydan T.D., Kuyper T.W., De Boer W. A thready affair: Linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol. Rev. 2013;37:477–494. doi: 10.1111/1574-6976.12001. PubMed DOI

Baldrian P., Valášková V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 2008;32:501–521. doi: 10.1111/j.1574-6976.2008.00106.x. PubMed DOI

Hofrichter M., Ullrich R., Pecyna M.J., Liers C., Lundell T. New and classic families of secreted fungal heme peroxidases. Appl. Microbiol. Biotechnol. 2010;87:871–897. doi: 10.1007/s00253-010-2633-0. PubMed DOI

Martínez M.J., Speranza M., Ruiz-Dueñas F.J., Ferreira P., Camarero S., Guillénb F., Martínez M.J., Gutiérrez A., Del Río J.C. Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 2005;8:195–204. PubMed

Osono T., Takeda H. Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. In: Bennett J.W., editor. Mycologia. Volume 94. Taylor & Francis; London, UK: 2002. [(accessed on 31 January 2017)]. pp. 421–427. Available online: https://www.tandfonline.com/doi/abs/10.1080/15572536.2003.11833207. PubMed DOI

Osono T., Takeda H. Fungal decomposition of Abies needle and Betula leaf litter. Mycologia. 2006;98:172–179. doi: 10.1080/15572536.2006.11832689. PubMed DOI

Batista-García R.A., Kumar V.V., Ariste A., Tovar-Herrera O.E., Savary O., Peidro-Guzmán H., González-Abradelo D., Jackson S.A., Dobson A.D., Sánchez-Carbente M.D.R., et al. Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents. J. Environ. Manag. 2017;198:1–11. doi: 10.1016/j.jenvman.2017.05.010. PubMed DOI

Kamal S., Asgher M., Khalil-ur-Rehman Q., Zahir Z.A. Hyperproduction of laccase by Pleurotus ostreatus IBL-02 during decolorization of Drimarene Brulliant Red K-4BL. Fresen Environ. Bull. 2011;20:1478–1486.

Pointing S. Feasibility of bioremediation by white-rot fungi. Appl. Microbiol. Biotechnol. 2001;57:20–33. doi: 10.1007/s002530100745. PubMed DOI

Steffen K.T., Cajthaml T., Šnajdr J., Baldrian P. Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Res. Microbiol. 2007;158:447–455. doi: 10.1016/j.resmic.2007.04.002. PubMed DOI

Moreira M., Mielgo I., Feijoo G., Lema J. Evaluation of different fungal strains in the decolourisation of synthetic dyes. Biotechnol. Lett. 2000;22:1499–1503. doi: 10.1023/A:1005606330152. DOI

Shin K., Oh I., Kim C. Production and Purification of Remazol Brilliant Blue R Decolorizing Peroxidase from the Culture Filtrate of Pleurotus ostreatus. Appl. Environ. Microbiol. 1997;63:1744–1748. doi: 10.1128/AEM.63.5.1744-1748.1997. PubMed DOI PMC

Kapich A.N., A Jensen K., Hammel K.E. Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett. 1999;461:115–119. doi: 10.1016/S0014-5793(99)01432-5. PubMed DOI

Tanaka H., Itakura S., Enoke A. Hydroxyl Radical Generation by an Extracellular Low-Molecular-Weight Substance and Phenol Oxidase Activity During Wood Degradation by the White-Rot Basidiomycete Phanerochaete chrysosporium. J. Biotechnol. 1999;53:21–28. doi: 10.1515/HF.1999.004. PubMed DOI

Mehmood R.T., Asad M.J., Asgher M., Hadri S.H., Gulfraz M., Wu J.D., Bhatti M.I., Zaman N., Ahmed D. First Report of using Response Surface Methodology for the Biodegradation of Single Azo Disperse Dyes by Indigenous Daedalea dickinsii-IEBL-2. Romanian Biotechnol. Lett. 2020;25:1236–1245. doi: 10.25083/rbl/25.1/1236.1245. DOI

Bibi I., Javed S., Ata S., Majid F., Kamal S., Sultan M., Jilani K., Umair M., Khan M.I., Iqbal M., et al. Biodegradation of synthetic orange G dye by Plearotus sojar-caju with Punica granatum peal as natural mediator. Biocatal. Agric. Biotechnol. 2019;22:101420. doi: 10.1016/j.bcab.2019.101420. DOI

Iark D., Buzzo A.J.D.R., Garcia J.A.A., Côrrea V.G., Helm C.V., Corrêa R.C.G., Peralta R.A., Moreira R.D.F.P.M., Bracht A., Peralta R.M. Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresour. Technol. 2019;289:121655. doi: 10.1016/j.biortech.2019.121655. PubMed DOI

Rao R.G., Ravichandran A., Kandalam G., Kumar S.A., Swaraj S., Sridhar M. Screening of wild basidiomycetes and evaluation of the biodegradation potential of dyes and lignin by manganese peroxidases. BioResources. 2019;14:6558–6576.

Pandey R.K., Tewari S., Tewari L. Lignolytic mushroom Lenzites elegans WDP2: Laccase production, characterization, and bioremediation of synthetic dyes. Ecotoxicol. Environ. Saf. 2018;158:50–58. doi: 10.1016/j.ecoenv.2018.04.003. PubMed DOI

Legerská B., Chmelová D., Ondrejovič M. Decolourization and detoxification of monoazo dyes by laccase from the white-rot fungus Trametes versicolor. J. Biotechnol. 2018;285:84–90. doi: 10.1016/j.jbiotec.2018.08.011. PubMed DOI

Martínez-Sánchez J., Membrillo-Venegas I., Martínez-Trujillo A., García-Rivero A. Decolorization of reactive black 5 by immobilized Trametes versicolor. Rev. Mex. Ing. Quim. 2018;17:107–121. doi: 10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Martinez. DOI

Yehia R.S., Rodriguez-Couto S. Discoloration of the azo dye Congo Red by manganese-dependent peroxidase from Pleurotus sajor caju. Appl. Biochem. Microbiol. 2017;53:222–229. doi: 10.1134/S0003683817020181. DOI

Bosco F., Mollea C., Ruggeri B. Decolorization of Congo Red by Phanerochaete chrysosporium: The role of biosorption and biodegradation. Environ. Technol. 2017;38:2581–2588. doi: 10.1080/09593330.2016.1271019. PubMed DOI

Sing N.N., Husaini A., Zulkharnain A., Roslan H.A. Decolourisation Capabilities of Ligninolytic Enzymes Produced by Marasmius cladophyllus UMAS MS8 on Remazol Brilliant Blue R and Other Azo Dyes. BioMed Res. Int. 2017;2017:1–8. doi: 10.1155/2017/1325754. PubMed DOI PMC

Sayahi E., Ladhari N., Mechichi T., Sakli F. Azo dyes decolourization by the laccase fromTrametes trogii. J. Text. Inst. 2016;107:1478–1482. doi: 10.1080/00405000.2015.1128224. DOI

Permpornsakul P., Prasongsuk S., Lotrakul P., Eveleigh D., Kobayashi D., Imai T., Punnapayak H. Biological Treatment of Reactive Black 5 by Resupinate White Rot Fungus Phanerochaete sordida PBU 0057. Pol. J. Environ. Stud. 2016;25:1167–1176. doi: 10.15244/pjoes/61625. DOI

Qin X., Zhang J., Zhang X., Yang Y. Induction, Purification and Characterization of a Novel Manganese Peroxidase from Irpex lacteus CD2 and Its Application in the Decolorization of Different Types of Dye. PLOS ONE. 2014;9:e113282. doi: 10.1371/journal.pone.0113282. PubMed DOI PMC

Knop D., Ben-Ari J., Salame T.M., Levinson D., Yarden O., Hadar Y. Mn2+-deficiency reveals a key role for the Pleurotus ostreatus versatile peroxidase (VP4) in oxidation of aromatic compounds. Appl. Microbiol. Biotechnol. 2014;98:6795–6804. doi: 10.1007/s00253-014-5689-4. PubMed DOI

Daâssi D., Rodriguez-Couto S., Nasri M., Mechichi T. Biodegradation of textile dyes by immobilized laccase form Coriolopsis galica into Ca-alginate beads. Int. Biodeter. Biodegr. 2014;90:71–78. doi: 10.1016/j.ibiod.2014.02.006. DOI

Bao S., Teng Z., Ding S. Heterologous expression and characterization of a novel laccase isoenzyme with dyes decolorization potential from Coprinus comatus. Mol. Biol. Rep. 2012;40:1927–1936. doi: 10.1007/s11033-012-2249-9. PubMed DOI

Neto S.L.M., Mussatto S.I., Machado K.M.G., Milagres A.M.F. Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing basidiomycetes strains. Lett. Appl. Microbiol. 2013;56:283–290. doi: 10.1111/lam.12049. PubMed DOI

Salame T.M., Knop D., Levinson D., Mabjeesh S.J., Yarden O., Hadar Y. Release of Pleurotus ostreatus Versatile-Peroxidase from Mn2+ Repression Enhances Anthropogenic and Natural Substrate Degradation. PLOS ONE. 2012;7:e52446. doi: 10.1371/journal.pone.0052446. PubMed DOI PMC

Pakshirajan K., Jaiswal S., Das R.K. Biodecolourization of azo dyes using Phanerochaete chrysosporium: Effect of culture conditions and enzyme activities. J. Sci. Ind. Res. 2011;70:987–991.

Bhattacharya S., Das A., G M., K V., J S. Mycoremediation of Congo red dye by filamentous fungi. Braz. J. Microbiol. 2011;42:1526–1536. doi: 10.1590/S1517-83822011000400040. PubMed DOI PMC

Diwaniyan S., Kharb D., Raghukumar C., Kuhad R.C. Decolorization of Synthetic Dyes and Textile Effluents by Basidiomycetous Fungi. Water Air Soil Pollut. 2009;210:409–419. doi: 10.1007/s11270-009-0263-x. DOI

Gomes E., Aguiar A.P., Carvalho C.C., Bonfá M.R.B., Silva R.D., Boscolo M. Ligninases production by Basidiomycetes strains on lignocellulosic agricultural residues and their application in the decolorization of synthetic dyes. Braz. J. Microbiol. 2009;40:31–39. doi: 10.1590/S1517-83822009000100005. PubMed DOI PMC

Chhabra M., Mishra S., Sreekrishnan T.R. Mediator-assisted Decolorization and Detoxification of Textile Dyes/Dye Mixture by Cyathus bulleri Laccase. Appl. Biochem. Biotechnol. 2008;151:587–598. doi: 10.1007/s12010-008-8234-z. PubMed DOI

Junghanns C., Krauss G., Schlosser D. Potential of aquatic fungi derived from diverse freshwater environments to decolourise synthetic azo and anthraquinone dyes. Bioresour. Technol. 2008;99:1225–1235. doi: 10.1016/j.biortech.2007.02.015. PubMed DOI

Šušla M., Svobodová K. Effect of various synthetic dyes on the production of manganese-dependent peroxidase isoenzymes by immobilized Irpex lacteus. World J. Microbiol. Biotechnol. 2007;24:225–230. doi: 10.1007/s11274-007-9460-1. DOI

Abrahão M.C., Gugliotta A.D.M., Da Silva R., Fujieda R.J.Y., Boscolo M., Gomes E. Ligninolytic activity from newly isolated basidiomycete strains and effect of these enzymes on the azo dye orange II decolourisation. Ann. Microbiol. 2008;58:427–432. doi: 10.1007/bf03175538. DOI

Kokol V., Doliška A., Eichlerová I., Baldrian P., Nerud F. Decolorization of textile dyes by whole cultures of Ischnoderma resinosum and by purified laccase and Mn-peroxidase. Enzym. Microb. Technol. 2007;40:1673–1677. doi: 10.1016/j.enzmictec.2006.08.015. DOI

Qin P., Wu Y., Adil B., Wang J., Gu Y., Yu X., Zhao K., Zhang X., Ma M., Chen Q., et al. Optimization of Laccase from Ganoderma lucidum Decolorizing Remazol Brilliant Blue R and Glac1 as Main Laccase-Contributing Gene. Molecules. 2019;24:3914. doi: 10.3390/molecules24213914. PubMed DOI PMC

Anita S.H., Sari F.P., Yanto D.H.Y. Decolorization of Synthetic Dyes by Ligninolytic Enzymes from Trametes hirsuta D7. Makara J. Sci. 2019;23:44–50. doi: 10.7454/mss.v23i1.10803. DOI

Siddiqui Y., Surendran A., Fishal E.M.M. Inhibition of Lignin Degrading Enzymes of Ganoderma spp.: An Alternative Control of Basal Stem Rot Disease of Oil Palm. Int. J. Agric. Biol. 2019;3:523–530.

Zhuo R., Zhang J., Yu H., Ma F., Zhang X. The roles of Pleurotus ostreatus HAUCC 162 laccase isoenzymes in decolorization of synthetic dyes and the transformation pathways. Chemosphere. 2019;234:733–745. doi: 10.1016/j.chemosphere.2019.06.113. PubMed DOI

Pype R., Flahaut S., Debaste F. On the importance of mechanisms analysis in the degradation of micropollutants by laccases: The case of Remazol Brilliant Blue R. Environ. Technol. Innov. 2019;14:100324. doi: 10.1016/j.eti.2019.100324. DOI

Chicatto J.A., Rainert K.T., Gonçalves M.J., Helm C.V., Altmajer-Vaz D., Tavares L.B.B. Decolorization of textile industry wastewater in solid state fermentation with Peach-Palm (Bactris gasipaes) residue. Braz. J. Biol. 2018;78:718–727. doi: 10.1590/1519-6984.175074. PubMed DOI

Cardoso B.K., Linde G.A., Colauto N.B., Valle J.S.D. Panus strigellus laccase decolorizes anthraquinone, azo, and triphenylmethane dyes. Biocatal. Agric. Biotechnol. 2018;16:558–563. doi: 10.1016/j.bcab.2018.09.026. DOI

Isanapong J., Mataraj S. Application of ligninolytic enzyme ofLentinus polychrouson synthetic dye decolorization. IOP Conf. Ser. Earth Environ. Sci. 2018;185:012004. doi: 10.1088/1755-1315/185/1/012004. DOI

Garrido-Bazán V., Téllez-Téllez M., Herrera-Estrella A., Díaz-Godínez G., Nava-Galicia S., Villalobos-López M.Á., Arroyo-Becerra A., Bibbins-Martínez M. Effect of textile dyes on activity and differential regulation of laccase genes from Pleurotus ostreatus grown in submerged fermentation. AMB Express. 2016;6:1–9. doi: 10.1186/s13568-016-0263-3. PubMed DOI PMC

Lu R., Ma L., He F., Yu D., Fan R., Zhang Y., Long Z., Zhang X., Yang Y. White-rot fungus Ganoderma sp.En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations. Bioprocess Biosyst. Eng. 2015;39:381–390. doi: 10.1007/s00449-015-1521-5. PubMed DOI

Sumandono T., Saragih H., Migirin, Watanabe T., Amirta R. Decolorization of Remazol Brilliant Blue R by New Isolated White Rot Fungus Collected from Tropical Rain Forest in East Kalimantan and its Ligninolytic Enzymes Activity. Procedia Environ. Sci. 2015;28:45–51. doi: 10.1016/j.proenv.2015.07.007. DOI

Grandes-Blanco A.I., Díaz-Godínez G., Téllez-Téllez M., Delgado-Macuil R., Rojas-López M., Bibbins-Martínez M.D. LIGNINOLYTIC ACTIVITY PATTERNS OFPleurotus ostreatusOBTAINED BY SUBMERGED FERMENTATION IN PRESENCE OF 2,6-DIMETHOXYPHENOL AND REMAZOL BRILLIANT BLUE R DYE. Prep. Biochem. Biotechnol. 2013;43:468–480. doi: 10.1080/10826068.2012.746233. PubMed DOI

Chen S.-C., Wu P.-H., Su Y.-C., Wen T.-N., Wei Y.-S., Wang N.-C., Hsu C.-A., Wang A.H.-J., Shyur L.-F. Biochemical characterization of a novel laccase from the basidiomycete fungus Cerrena sp. WR1. Protein Eng. Des. Sel. 2012;25:761–769. doi: 10.1093/protein/gzs082. PubMed DOI

Sun S. Decolourization characterizations of crude enzymes from a novel basidiomycete Mycena purpureofusca. Afr. J. Microbiol. Res. 2012;6:3501–3509. doi: 10.5897/ajmr12.026. DOI

Bibi I., Bhatti H.N. Enhanced Biodecolorization of Reactive Dyes by Basidiomycetes Under Static Conditions. Appl. Biochem. Biotechnol. 2012;166:2078–2090. doi: 10.1007/s12010-012-9635-6. PubMed DOI

Hadibarata T., Yusoff A.R.M., Kristanti R.A. Decolorization and Metabolism of Anthraquionone-Type Dye by Laccase of White-Rot Fungi Polyporus sp. S133. Water Air Soil Pollut. 2012;223:933–941. doi: 10.1007/s11270-011-0914-6. DOI

Zilly A., Coelho-Moreira J.D.S., Bracht A., De Souza C.G.M., Carvajal A.E., Koehnlein E.A., Peralta R.M. Influence of NaCl and Na2SO4 on the kinetics and dye decolorization ability of crude laccase from Ganoderma lucidum. Int. Biodeterior. Biodegradation. 2011;65:340–344. doi: 10.1016/j.ibiod.2010.12.007. DOI

Wang Z.-X., Cai Y., Liao X., Tao G.-J., Li Y.-Y., Zhang F., Zhang D.-B. Purification and characterization of two thermostable laccases with high cold adapted characteristics from Pycnoporus sp. SYBC-L1. Process. Biochem. 2010;45:1720–1729. doi: 10.1016/j.procbio.2010.07.011. DOI

Neifar M., Jaouani A., Ellouze-Ghorbel R., Ellouze-Chaabouni S. Purification, characterization and decolourization ability of Fomes fomentarius laccase produced in solid medium. J. Mol. Catal. B Enzym. 2010;64:68–74. doi: 10.1016/j.molcatb.2010.02.004. DOI

Kanwal N., Asgher M., Bhatti H.N., Sheikh M.A. Ligninase synthesis and decolorization of drimarine blue k2rl by Pleurotus ostreatus IBL-02 in carbon and nitrogen sufficient shake flask medium. Fresen. Environ. Bull. 2010;19:63–68.

Neto S.L.M., Matheus D.R., Machado K.M.G. Influence of pH on the growth, laccase activity and RBBR decolorization by tropical basidiomycetes. Braz. Arch. Biol. Technol. 2009;52:1075–1082. doi: 10.1590/S1516-89132009000500003. DOI

Lu L., Zhao M., Zhang B.-B., Yu S.-Y., Bian X.-J., Wang W., Wang Y. Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme. Appl. Microbiol. Biotechnol. 2007;74:1232–1239. doi: 10.1007/s00253-006-0767-x. PubMed DOI

Palmieri G., Cennamo G., Sannia G. Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzym. Microb. Technol. 2005;36:17–24. doi: 10.1016/j.enzmictec.2004.03.026. DOI

Soares G.M., Amorim M., Hrdina R., Costa-Ferreira M. Studies on the biotransformation of novel disazo dyes by laccase. Process. Biochem. 2002;37:581–587. doi: 10.1016/S0032-9592(01)00244-8. DOI

Chagas E.P., Durrant L.R. Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzym. Microb. Technol. 2001;29:473–477. doi: 10.1016/S0141-0229(01)00405-7. DOI

Eichlerová I., Homolka L., Žifčáková L., Lisá L., Dobiášová P., Baldrian P. Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecol. 2015;13:10–22. doi: 10.1016/j.funeco.2014.08.002. DOI

Tien M., Kirk T.K. Lignin peroxidase of Phanerochaete chrysosporium. In: Wood W.A., Kellogg T.S., editors. Method Enzymol. Volume 161. Academic Press; New York, NY, USA: 1988. [(accessed on 7 January 2004)]. pp. 238–248. Available online: https://www.sciencedirect.com/science/article/pii/0076687988610251.

Bourbonnais R., Paice M.G. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 1990;267:99–102. doi: 10.1016/0014-5793(90)80298-W. PubMed DOI

Ngo T., Lenhoff H.M. A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal. Biochem. 1980;105:389–397. doi: 10.1016/0003-2697(80)90475-3. PubMed DOI

Daniel G., Volc J., Kubatova E. Pyranose Oxidase, a Major Source of H2O2 during Wood Degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl. Environ. Microbiol. 1994;60:2524–2532. doi: 10.1128/AEM.60.7.2524-2532.1994. PubMed DOI PMC

Jarosz-Wilkołazka A., Rdest-Kochmańska J., Malarczyk E., Wardas W., Leonowicz A. Fungi and their ability to decolorize azo and anthraquinonic dyes. Enzyme. Microbiol. Technol. 2002;30:566–572. doi: 10.1016/S0141-0229(02)00022-4. DOI

Novotný Č., Rawal B., Bhatt M., Patel M., Šašek V., Molitoris H.P. Capacity of Irpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes. J. Biotechnol. 2001;89:113–122. doi: 10.1016/S0168-1656(01)00321-2. PubMed DOI

Casieri L., Anastasi A., Prigione V., Varese G.C. Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity. Antonie van Leeuwenhoek. 2010;98:483–504. doi: 10.1007/s10482-010-9466-9. PubMed DOI

Chander M., Arora D. Evaluation of some white-rot fungi for their potential to decolourise industrial dyes. Dye Pigment. 2007;72:192–198. doi: 10.1016/j.dyepig.2005.08.023. DOI

Chander M., Arora D.S., Bath H.K. Biodecolourisation of some industrial dyes by white-rot fungi. J. Ind. Microbiol. Biotechnol. 2004;31:94–97. doi: 10.1007/s10295-004-0116-y. PubMed DOI

Eichlerová I., Homolka L., Nerud F. Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens. Bioresour. Technol. 2006;97:2153–2159. doi: 10.1016/j.biortech.2005.09.014. PubMed DOI

Fu Y., Viraraghavan T. Fungal decolorization of dye wastewaters: A review. Bioresour. Technol. 2001;79:251–262. doi: 10.1016/S0960-8524(01)00028-1. PubMed DOI

Paszczynski A., Pasti-Grigsby M.B., Goszczynski S., Crawford R.L. Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl. Environ. Microbiol. 1992;58:3598–3604. doi: 10.1128/AEM.58.11.3598-3604.1992. PubMed DOI PMC

Spadaro J.T., Gold M.H., Renganathan V. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 1992;58:2397–2401. doi: 10.1128/AEM.58.8.2397-2401.1992. PubMed DOI PMC

Swamy J., Ramsay J. The evaluation of white rot fungi in the decoloration of textile dyes. Enzym. Microb. Technol. 1999;24:130–137. doi: 10.1016/S0141-0229(98)00105-7. DOI

Dias A., Bezerra R.M., Lemos P.M., Pereira A.N. In vivo and laccase-catalyzed decolourization of xenobiotic azo dyes by a basidiomycetous fungus: Characterization of its ligninolytic system. World J. Microb. Biot. 2003;19:969–975. doi: 10.1023/B:WIBI.0000007331.94390.5c. DOI

Kunjadia P.D., Sanghvi G.V., Kunjadia A.P., Mukhopadhyay P.N., Dave G.S. Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes. SpringerPlus. 2016;5:1–9. doi: 10.1186/s40064-016-3156-7. PubMed DOI PMC

Nyanhongo G., Gomes J., Gübitz G., Zvauya R., Read J., Steiner W. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Res. 2002;36:1449–1456. doi: 10.1016/S0043-1354(01)00365-7. PubMed DOI

Harazono K., Watanabe Y., Nakamura K. Decolorization of azo dye by white-rot basidiomycete Phanerochaete sordida and by its manganese peroxidase. J. Biosci. Bioeng. 2003;5:455–459. doi: 10.1016/S1389-1723(03)80044-0. PubMed DOI

Kariminiaae-Hamedaani H.-R., Sakurai A., Sakakibara M. Decolorization of synthetic dyes by a new manganese peroxidase-producing white rot fungus. Dye. Pigment. 2007;72:157–162. doi: 10.1016/j.dyepig.2005.08.010. DOI

Moreira M.T., Palma C., Mielgo I., Feijoo G., Lema J. In vitro degradation of a polymeric dye (Poly R-478) by manganese peroxidase. Biotechnol. Bioeng. 2001;75:362–368. doi: 10.1002/bit.10052. PubMed DOI

Wesenberg D. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 2003;22:161–187. doi: 10.1016/j.biotechadv.2003.08.011. PubMed DOI

Kotterman M., A Wasseveld R., A Field J. Hydrogen Peroxide Production as a Limiting Factor in Xenobiotic Compound Oxidation by Nitrogen-Sufficient Cultures of Bjerkandera sp. Strain BOS55 Overproducing Peroxidases. Appl. Environ. Microbiol. 1996;62:880–885. doi: 10.1128/AEM.62.3.880-885.1996. PubMed DOI PMC

Reina R., Liers C., García-Romera I., Aranda E. Enzymatic mechanisms and detoxification of dry olive-mill residue by Cyclocybe aegerita, Mycetinis alliaceus and Chondrostereum purpureum. Int. Biodeterior. Biodegradation. 2017;117:89–96. doi: 10.1016/j.ibiod.2016.11.029. DOI

Heinfling A., Bergbauer M., Szewzyk U. Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. Appl. Microbiol. Biotechnol. 1997;48:261–266. doi: 10.1007/s002530051048. DOI

Sodaneath H., Lee J.-I., Yang S.-O., Jung H., Ryu H.W., Cho K.-S. Decolorization of textile dyes in an air-lift bioreactor inoculated with Bjerkandera adusta OBR105. J. Environ. Sci. Heal. Part A. 2017;52:1099–1111. doi: 10.1080/10934529.2017.1340753. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...