Ligninolytic Enzyme Production and Decolorization Capacity of Synthetic Dyes by Saprotrophic White Rot, Brown Rot, and Litter Decomposing Basidiomycetes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33228232
PubMed Central
PMC7711621
DOI
10.3390/jof6040301
PII: jof6040301
Knihovny.cz E-zdroje
- Klíčová slova
- Basidiomycetes, Orange G, Remazol Brilliant Blue R, decolorization, ligninolytic enzymes,
- Publikační typ
- časopisecké články MeSH
An extensive screening of saprotrophic Basidiomycetes causing white rot (WR), brown rot (BR), or litter decomposition (LD) for the production of laccase and Mn-peroxidase (MnP) and decolorization of the synthetic dyes Orange G and Remazol Brilliant Blue R (RBBR) was performed. The study considered in total 150 strains belonging to 77 species. The aim of this work was to compare the decolorization and ligninolytic capacity among different ecophysiological and taxonomic groups of Basidiomycetes. WR strains decolorized both dyes most efficiently; high decolorization capacity was also found in some LD fungi. The enzyme production was recorded in all three ecophysiology groups, but to a different extent. All WR and LD fungi produced laccase, and the majority of them also produced MnP. The strains belonging to BR lacked decolorization capabilities. None of them produced MnP and the production of laccase was either very low or absent. The most efficient decolorization of both dyes and the highest laccase production was found among the members of the orders Polyporales and Agaricales. The strains with high MnP activity occurred across almost all fungal orders (Polyporales, Agaricales, Hymenochaetales, and Russulales). Synthetic dye decolorization by fungal strains was clearly related to their production of ligninolytic enzymes and both properties were determined by the interaction of their ecophysiology and taxonomy, with a more relevant role of ecophysiology. Our screening revealed 12 strains with high decolorization capacity (9 WR and 3 LD), which could be promising for further biotechnological utilization.
Zobrazit více v PubMed
Lee A.H., Lee H., Heo Y.M., Lim Y.W., Kim C.-M., Kim G.-H., Chang W., Kim J.-J. A proposed stepwise screening framework for the selection of polycyclic aromatic hydrocarbon (PAH)-degrading white rot fungi. Bioprocess Biosyst. Eng. 2020;43:767–783. doi: 10.1007/s00449-019-02272-w. PubMed DOI
Sen S.K., Raut S., Bandyopadhyay P., Raut S. Fungal decolouration and degradation of azo dyes: A review. Fungal Biol. Rev. 2016;30:112–133. doi: 10.1016/j.fbr.2016.06.003. DOI
Baldrián P. Chapter 2 Enzymes of Saprotrophic Basidiomycetes. Volume 28. Elsevier; Amsterdam, The Netherlands: 2008. pp. 19–41.
Kjøller A., Struwe S. Enzymes in the Environment. Marcel Dekker; New York, NY, USA: 2003. Fungal Communities, Succession, Enzymes, and Decomposition; pp. 267–284.
Van Der Wal A., Geydan T.D., Kuyper T.W., De Boer W. A thready affair: Linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol. Rev. 2013;37:477–494. doi: 10.1111/1574-6976.12001. PubMed DOI
Baldrian P., Valášková V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 2008;32:501–521. doi: 10.1111/j.1574-6976.2008.00106.x. PubMed DOI
Hofrichter M., Ullrich R., Pecyna M.J., Liers C., Lundell T. New and classic families of secreted fungal heme peroxidases. Appl. Microbiol. Biotechnol. 2010;87:871–897. doi: 10.1007/s00253-010-2633-0. PubMed DOI
Martínez M.J., Speranza M., Ruiz-Dueñas F.J., Ferreira P., Camarero S., Guillénb F., Martínez M.J., Gutiérrez A., Del Río J.C. Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 2005;8:195–204. PubMed
Osono T., Takeda H. Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. In: Bennett J.W., editor. Mycologia. Volume 94. Taylor & Francis; London, UK: 2002. [(accessed on 31 January 2017)]. pp. 421–427. Available online: https://www.tandfonline.com/doi/abs/10.1080/15572536.2003.11833207. PubMed DOI
Osono T., Takeda H. Fungal decomposition of Abies needle and Betula leaf litter. Mycologia. 2006;98:172–179. doi: 10.1080/15572536.2006.11832689. PubMed DOI
Batista-García R.A., Kumar V.V., Ariste A., Tovar-Herrera O.E., Savary O., Peidro-Guzmán H., González-Abradelo D., Jackson S.A., Dobson A.D., Sánchez-Carbente M.D.R., et al. Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents. J. Environ. Manag. 2017;198:1–11. doi: 10.1016/j.jenvman.2017.05.010. PubMed DOI
Kamal S., Asgher M., Khalil-ur-Rehman Q., Zahir Z.A. Hyperproduction of laccase by Pleurotus ostreatus IBL-02 during decolorization of Drimarene Brulliant Red K-4BL. Fresen Environ. Bull. 2011;20:1478–1486.
Pointing S. Feasibility of bioremediation by white-rot fungi. Appl. Microbiol. Biotechnol. 2001;57:20–33. doi: 10.1007/s002530100745. PubMed DOI
Steffen K.T., Cajthaml T., Šnajdr J., Baldrian P. Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Res. Microbiol. 2007;158:447–455. doi: 10.1016/j.resmic.2007.04.002. PubMed DOI
Moreira M., Mielgo I., Feijoo G., Lema J. Evaluation of different fungal strains in the decolourisation of synthetic dyes. Biotechnol. Lett. 2000;22:1499–1503. doi: 10.1023/A:1005606330152. DOI
Shin K., Oh I., Kim C. Production and Purification of Remazol Brilliant Blue R Decolorizing Peroxidase from the Culture Filtrate of Pleurotus ostreatus. Appl. Environ. Microbiol. 1997;63:1744–1748. doi: 10.1128/AEM.63.5.1744-1748.1997. PubMed DOI PMC
Kapich A.N., A Jensen K., Hammel K.E. Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett. 1999;461:115–119. doi: 10.1016/S0014-5793(99)01432-5. PubMed DOI
Tanaka H., Itakura S., Enoke A. Hydroxyl Radical Generation by an Extracellular Low-Molecular-Weight Substance and Phenol Oxidase Activity During Wood Degradation by the White-Rot Basidiomycete Phanerochaete chrysosporium. J. Biotechnol. 1999;53:21–28. doi: 10.1515/HF.1999.004. PubMed DOI
Mehmood R.T., Asad M.J., Asgher M., Hadri S.H., Gulfraz M., Wu J.D., Bhatti M.I., Zaman N., Ahmed D. First Report of using Response Surface Methodology for the Biodegradation of Single Azo Disperse Dyes by Indigenous Daedalea dickinsii-IEBL-2. Romanian Biotechnol. Lett. 2020;25:1236–1245. doi: 10.25083/rbl/25.1/1236.1245. DOI
Bibi I., Javed S., Ata S., Majid F., Kamal S., Sultan M., Jilani K., Umair M., Khan M.I., Iqbal M., et al. Biodegradation of synthetic orange G dye by Plearotus sojar-caju with Punica granatum peal as natural mediator. Biocatal. Agric. Biotechnol. 2019;22:101420. doi: 10.1016/j.bcab.2019.101420. DOI
Iark D., Buzzo A.J.D.R., Garcia J.A.A., Côrrea V.G., Helm C.V., Corrêa R.C.G., Peralta R.A., Moreira R.D.F.P.M., Bracht A., Peralta R.M. Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresour. Technol. 2019;289:121655. doi: 10.1016/j.biortech.2019.121655. PubMed DOI
Rao R.G., Ravichandran A., Kandalam G., Kumar S.A., Swaraj S., Sridhar M. Screening of wild basidiomycetes and evaluation of the biodegradation potential of dyes and lignin by manganese peroxidases. BioResources. 2019;14:6558–6576.
Pandey R.K., Tewari S., Tewari L. Lignolytic mushroom Lenzites elegans WDP2: Laccase production, characterization, and bioremediation of synthetic dyes. Ecotoxicol. Environ. Saf. 2018;158:50–58. doi: 10.1016/j.ecoenv.2018.04.003. PubMed DOI
Legerská B., Chmelová D., Ondrejovič M. Decolourization and detoxification of monoazo dyes by laccase from the white-rot fungus Trametes versicolor. J. Biotechnol. 2018;285:84–90. doi: 10.1016/j.jbiotec.2018.08.011. PubMed DOI
Martínez-Sánchez J., Membrillo-Venegas I., Martínez-Trujillo A., García-Rivero A. Decolorization of reactive black 5 by immobilized Trametes versicolor. Rev. Mex. Ing. Quim. 2018;17:107–121. doi: 10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Martinez. DOI
Yehia R.S., Rodriguez-Couto S. Discoloration of the azo dye Congo Red by manganese-dependent peroxidase from Pleurotus sajor caju. Appl. Biochem. Microbiol. 2017;53:222–229. doi: 10.1134/S0003683817020181. DOI
Bosco F., Mollea C., Ruggeri B. Decolorization of Congo Red by Phanerochaete chrysosporium: The role of biosorption and biodegradation. Environ. Technol. 2017;38:2581–2588. doi: 10.1080/09593330.2016.1271019. PubMed DOI
Sing N.N., Husaini A., Zulkharnain A., Roslan H.A. Decolourisation Capabilities of Ligninolytic Enzymes Produced by Marasmius cladophyllus UMAS MS8 on Remazol Brilliant Blue R and Other Azo Dyes. BioMed Res. Int. 2017;2017:1–8. doi: 10.1155/2017/1325754. PubMed DOI PMC
Sayahi E., Ladhari N., Mechichi T., Sakli F. Azo dyes decolourization by the laccase fromTrametes trogii. J. Text. Inst. 2016;107:1478–1482. doi: 10.1080/00405000.2015.1128224. DOI
Permpornsakul P., Prasongsuk S., Lotrakul P., Eveleigh D., Kobayashi D., Imai T., Punnapayak H. Biological Treatment of Reactive Black 5 by Resupinate White Rot Fungus Phanerochaete sordida PBU 0057. Pol. J. Environ. Stud. 2016;25:1167–1176. doi: 10.15244/pjoes/61625. DOI
Qin X., Zhang J., Zhang X., Yang Y. Induction, Purification and Characterization of a Novel Manganese Peroxidase from Irpex lacteus CD2 and Its Application in the Decolorization of Different Types of Dye. PLOS ONE. 2014;9:e113282. doi: 10.1371/journal.pone.0113282. PubMed DOI PMC
Knop D., Ben-Ari J., Salame T.M., Levinson D., Yarden O., Hadar Y. Mn2+-deficiency reveals a key role for the Pleurotus ostreatus versatile peroxidase (VP4) in oxidation of aromatic compounds. Appl. Microbiol. Biotechnol. 2014;98:6795–6804. doi: 10.1007/s00253-014-5689-4. PubMed DOI
Daâssi D., Rodriguez-Couto S., Nasri M., Mechichi T. Biodegradation of textile dyes by immobilized laccase form Coriolopsis galica into Ca-alginate beads. Int. Biodeter. Biodegr. 2014;90:71–78. doi: 10.1016/j.ibiod.2014.02.006. DOI
Bao S., Teng Z., Ding S. Heterologous expression and characterization of a novel laccase isoenzyme with dyes decolorization potential from Coprinus comatus. Mol. Biol. Rep. 2012;40:1927–1936. doi: 10.1007/s11033-012-2249-9. PubMed DOI
Neto S.L.M., Mussatto S.I., Machado K.M.G., Milagres A.M.F. Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing basidiomycetes strains. Lett. Appl. Microbiol. 2013;56:283–290. doi: 10.1111/lam.12049. PubMed DOI
Salame T.M., Knop D., Levinson D., Mabjeesh S.J., Yarden O., Hadar Y. Release of Pleurotus ostreatus Versatile-Peroxidase from Mn2+ Repression Enhances Anthropogenic and Natural Substrate Degradation. PLOS ONE. 2012;7:e52446. doi: 10.1371/journal.pone.0052446. PubMed DOI PMC
Pakshirajan K., Jaiswal S., Das R.K. Biodecolourization of azo dyes using Phanerochaete chrysosporium: Effect of culture conditions and enzyme activities. J. Sci. Ind. Res. 2011;70:987–991.
Bhattacharya S., Das A., G M., K V., J S. Mycoremediation of Congo red dye by filamentous fungi. Braz. J. Microbiol. 2011;42:1526–1536. doi: 10.1590/S1517-83822011000400040. PubMed DOI PMC
Diwaniyan S., Kharb D., Raghukumar C., Kuhad R.C. Decolorization of Synthetic Dyes and Textile Effluents by Basidiomycetous Fungi. Water Air Soil Pollut. 2009;210:409–419. doi: 10.1007/s11270-009-0263-x. DOI
Gomes E., Aguiar A.P., Carvalho C.C., Bonfá M.R.B., Silva R.D., Boscolo M. Ligninases production by Basidiomycetes strains on lignocellulosic agricultural residues and their application in the decolorization of synthetic dyes. Braz. J. Microbiol. 2009;40:31–39. doi: 10.1590/S1517-83822009000100005. PubMed DOI PMC
Chhabra M., Mishra S., Sreekrishnan T.R. Mediator-assisted Decolorization and Detoxification of Textile Dyes/Dye Mixture by Cyathus bulleri Laccase. Appl. Biochem. Biotechnol. 2008;151:587–598. doi: 10.1007/s12010-008-8234-z. PubMed DOI
Junghanns C., Krauss G., Schlosser D. Potential of aquatic fungi derived from diverse freshwater environments to decolourise synthetic azo and anthraquinone dyes. Bioresour. Technol. 2008;99:1225–1235. doi: 10.1016/j.biortech.2007.02.015. PubMed DOI
Šušla M., Svobodová K. Effect of various synthetic dyes on the production of manganese-dependent peroxidase isoenzymes by immobilized Irpex lacteus. World J. Microbiol. Biotechnol. 2007;24:225–230. doi: 10.1007/s11274-007-9460-1. DOI
Abrahão M.C., Gugliotta A.D.M., Da Silva R., Fujieda R.J.Y., Boscolo M., Gomes E. Ligninolytic activity from newly isolated basidiomycete strains and effect of these enzymes on the azo dye orange II decolourisation. Ann. Microbiol. 2008;58:427–432. doi: 10.1007/bf03175538. DOI
Kokol V., Doliška A., Eichlerová I., Baldrian P., Nerud F. Decolorization of textile dyes by whole cultures of Ischnoderma resinosum and by purified laccase and Mn-peroxidase. Enzym. Microb. Technol. 2007;40:1673–1677. doi: 10.1016/j.enzmictec.2006.08.015. DOI
Qin P., Wu Y., Adil B., Wang J., Gu Y., Yu X., Zhao K., Zhang X., Ma M., Chen Q., et al. Optimization of Laccase from Ganoderma lucidum Decolorizing Remazol Brilliant Blue R and Glac1 as Main Laccase-Contributing Gene. Molecules. 2019;24:3914. doi: 10.3390/molecules24213914. PubMed DOI PMC
Anita S.H., Sari F.P., Yanto D.H.Y. Decolorization of Synthetic Dyes by Ligninolytic Enzymes from Trametes hirsuta D7. Makara J. Sci. 2019;23:44–50. doi: 10.7454/mss.v23i1.10803. DOI
Siddiqui Y., Surendran A., Fishal E.M.M. Inhibition of Lignin Degrading Enzymes of Ganoderma spp.: An Alternative Control of Basal Stem Rot Disease of Oil Palm. Int. J. Agric. Biol. 2019;3:523–530.
Zhuo R., Zhang J., Yu H., Ma F., Zhang X. The roles of Pleurotus ostreatus HAUCC 162 laccase isoenzymes in decolorization of synthetic dyes and the transformation pathways. Chemosphere. 2019;234:733–745. doi: 10.1016/j.chemosphere.2019.06.113. PubMed DOI
Pype R., Flahaut S., Debaste F. On the importance of mechanisms analysis in the degradation of micropollutants by laccases: The case of Remazol Brilliant Blue R. Environ. Technol. Innov. 2019;14:100324. doi: 10.1016/j.eti.2019.100324. DOI
Chicatto J.A., Rainert K.T., Gonçalves M.J., Helm C.V., Altmajer-Vaz D., Tavares L.B.B. Decolorization of textile industry wastewater in solid state fermentation with Peach-Palm (Bactris gasipaes) residue. Braz. J. Biol. 2018;78:718–727. doi: 10.1590/1519-6984.175074. PubMed DOI
Cardoso B.K., Linde G.A., Colauto N.B., Valle J.S.D. Panus strigellus laccase decolorizes anthraquinone, azo, and triphenylmethane dyes. Biocatal. Agric. Biotechnol. 2018;16:558–563. doi: 10.1016/j.bcab.2018.09.026. DOI
Isanapong J., Mataraj S. Application of ligninolytic enzyme ofLentinus polychrouson synthetic dye decolorization. IOP Conf. Ser. Earth Environ. Sci. 2018;185:012004. doi: 10.1088/1755-1315/185/1/012004. DOI
Garrido-Bazán V., Téllez-Téllez M., Herrera-Estrella A., Díaz-Godínez G., Nava-Galicia S., Villalobos-López M.Á., Arroyo-Becerra A., Bibbins-Martínez M. Effect of textile dyes on activity and differential regulation of laccase genes from Pleurotus ostreatus grown in submerged fermentation. AMB Express. 2016;6:1–9. doi: 10.1186/s13568-016-0263-3. PubMed DOI PMC
Lu R., Ma L., He F., Yu D., Fan R., Zhang Y., Long Z., Zhang X., Yang Y. White-rot fungus Ganoderma sp.En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations. Bioprocess Biosyst. Eng. 2015;39:381–390. doi: 10.1007/s00449-015-1521-5. PubMed DOI
Sumandono T., Saragih H., Migirin, Watanabe T., Amirta R. Decolorization of Remazol Brilliant Blue R by New Isolated White Rot Fungus Collected from Tropical Rain Forest in East Kalimantan and its Ligninolytic Enzymes Activity. Procedia Environ. Sci. 2015;28:45–51. doi: 10.1016/j.proenv.2015.07.007. DOI
Grandes-Blanco A.I., Díaz-Godínez G., Téllez-Téllez M., Delgado-Macuil R., Rojas-López M., Bibbins-Martínez M.D. LIGNINOLYTIC ACTIVITY PATTERNS OFPleurotus ostreatusOBTAINED BY SUBMERGED FERMENTATION IN PRESENCE OF 2,6-DIMETHOXYPHENOL AND REMAZOL BRILLIANT BLUE R DYE. Prep. Biochem. Biotechnol. 2013;43:468–480. doi: 10.1080/10826068.2012.746233. PubMed DOI
Chen S.-C., Wu P.-H., Su Y.-C., Wen T.-N., Wei Y.-S., Wang N.-C., Hsu C.-A., Wang A.H.-J., Shyur L.-F. Biochemical characterization of a novel laccase from the basidiomycete fungus Cerrena sp. WR1. Protein Eng. Des. Sel. 2012;25:761–769. doi: 10.1093/protein/gzs082. PubMed DOI
Sun S. Decolourization characterizations of crude enzymes from a novel basidiomycete Mycena purpureofusca. Afr. J. Microbiol. Res. 2012;6:3501–3509. doi: 10.5897/ajmr12.026. DOI
Bibi I., Bhatti H.N. Enhanced Biodecolorization of Reactive Dyes by Basidiomycetes Under Static Conditions. Appl. Biochem. Biotechnol. 2012;166:2078–2090. doi: 10.1007/s12010-012-9635-6. PubMed DOI
Hadibarata T., Yusoff A.R.M., Kristanti R.A. Decolorization and Metabolism of Anthraquionone-Type Dye by Laccase of White-Rot Fungi Polyporus sp. S133. Water Air Soil Pollut. 2012;223:933–941. doi: 10.1007/s11270-011-0914-6. DOI
Zilly A., Coelho-Moreira J.D.S., Bracht A., De Souza C.G.M., Carvajal A.E., Koehnlein E.A., Peralta R.M. Influence of NaCl and Na2SO4 on the kinetics and dye decolorization ability of crude laccase from Ganoderma lucidum. Int. Biodeterior. Biodegradation. 2011;65:340–344. doi: 10.1016/j.ibiod.2010.12.007. DOI
Wang Z.-X., Cai Y., Liao X., Tao G.-J., Li Y.-Y., Zhang F., Zhang D.-B. Purification and characterization of two thermostable laccases with high cold adapted characteristics from Pycnoporus sp. SYBC-L1. Process. Biochem. 2010;45:1720–1729. doi: 10.1016/j.procbio.2010.07.011. DOI
Neifar M., Jaouani A., Ellouze-Ghorbel R., Ellouze-Chaabouni S. Purification, characterization and decolourization ability of Fomes fomentarius laccase produced in solid medium. J. Mol. Catal. B Enzym. 2010;64:68–74. doi: 10.1016/j.molcatb.2010.02.004. DOI
Kanwal N., Asgher M., Bhatti H.N., Sheikh M.A. Ligninase synthesis and decolorization of drimarine blue k2rl by Pleurotus ostreatus IBL-02 in carbon and nitrogen sufficient shake flask medium. Fresen. Environ. Bull. 2010;19:63–68.
Neto S.L.M., Matheus D.R., Machado K.M.G. Influence of pH on the growth, laccase activity and RBBR decolorization by tropical basidiomycetes. Braz. Arch. Biol. Technol. 2009;52:1075–1082. doi: 10.1590/S1516-89132009000500003. DOI
Lu L., Zhao M., Zhang B.-B., Yu S.-Y., Bian X.-J., Wang W., Wang Y. Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme. Appl. Microbiol. Biotechnol. 2007;74:1232–1239. doi: 10.1007/s00253-006-0767-x. PubMed DOI
Palmieri G., Cennamo G., Sannia G. Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzym. Microb. Technol. 2005;36:17–24. doi: 10.1016/j.enzmictec.2004.03.026. DOI
Soares G.M., Amorim M., Hrdina R., Costa-Ferreira M. Studies on the biotransformation of novel disazo dyes by laccase. Process. Biochem. 2002;37:581–587. doi: 10.1016/S0032-9592(01)00244-8. DOI
Chagas E.P., Durrant L.R. Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzym. Microb. Technol. 2001;29:473–477. doi: 10.1016/S0141-0229(01)00405-7. DOI
Eichlerová I., Homolka L., Žifčáková L., Lisá L., Dobiášová P., Baldrian P. Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecol. 2015;13:10–22. doi: 10.1016/j.funeco.2014.08.002. DOI
Tien M., Kirk T.K. Lignin peroxidase of Phanerochaete chrysosporium. In: Wood W.A., Kellogg T.S., editors. Method Enzymol. Volume 161. Academic Press; New York, NY, USA: 1988. [(accessed on 7 January 2004)]. pp. 238–248. Available online: https://www.sciencedirect.com/science/article/pii/0076687988610251.
Bourbonnais R., Paice M.G. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 1990;267:99–102. doi: 10.1016/0014-5793(90)80298-W. PubMed DOI
Ngo T., Lenhoff H.M. A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal. Biochem. 1980;105:389–397. doi: 10.1016/0003-2697(80)90475-3. PubMed DOI
Daniel G., Volc J., Kubatova E. Pyranose Oxidase, a Major Source of H2O2 during Wood Degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl. Environ. Microbiol. 1994;60:2524–2532. doi: 10.1128/AEM.60.7.2524-2532.1994. PubMed DOI PMC
Jarosz-Wilkołazka A., Rdest-Kochmańska J., Malarczyk E., Wardas W., Leonowicz A. Fungi and their ability to decolorize azo and anthraquinonic dyes. Enzyme. Microbiol. Technol. 2002;30:566–572. doi: 10.1016/S0141-0229(02)00022-4. DOI
Novotný Č., Rawal B., Bhatt M., Patel M., Šašek V., Molitoris H.P. Capacity of Irpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes. J. Biotechnol. 2001;89:113–122. doi: 10.1016/S0168-1656(01)00321-2. PubMed DOI
Casieri L., Anastasi A., Prigione V., Varese G.C. Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity. Antonie van Leeuwenhoek. 2010;98:483–504. doi: 10.1007/s10482-010-9466-9. PubMed DOI
Chander M., Arora D. Evaluation of some white-rot fungi for their potential to decolourise industrial dyes. Dye Pigment. 2007;72:192–198. doi: 10.1016/j.dyepig.2005.08.023. DOI
Chander M., Arora D.S., Bath H.K. Biodecolourisation of some industrial dyes by white-rot fungi. J. Ind. Microbiol. Biotechnol. 2004;31:94–97. doi: 10.1007/s10295-004-0116-y. PubMed DOI
Eichlerová I., Homolka L., Nerud F. Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens. Bioresour. Technol. 2006;97:2153–2159. doi: 10.1016/j.biortech.2005.09.014. PubMed DOI
Fu Y., Viraraghavan T. Fungal decolorization of dye wastewaters: A review. Bioresour. Technol. 2001;79:251–262. doi: 10.1016/S0960-8524(01)00028-1. PubMed DOI
Paszczynski A., Pasti-Grigsby M.B., Goszczynski S., Crawford R.L. Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl. Environ. Microbiol. 1992;58:3598–3604. doi: 10.1128/AEM.58.11.3598-3604.1992. PubMed DOI PMC
Spadaro J.T., Gold M.H., Renganathan V. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 1992;58:2397–2401. doi: 10.1128/AEM.58.8.2397-2401.1992. PubMed DOI PMC
Swamy J., Ramsay J. The evaluation of white rot fungi in the decoloration of textile dyes. Enzym. Microb. Technol. 1999;24:130–137. doi: 10.1016/S0141-0229(98)00105-7. DOI
Dias A., Bezerra R.M., Lemos P.M., Pereira A.N. In vivo and laccase-catalyzed decolourization of xenobiotic azo dyes by a basidiomycetous fungus: Characterization of its ligninolytic system. World J. Microb. Biot. 2003;19:969–975. doi: 10.1023/B:WIBI.0000007331.94390.5c. DOI
Kunjadia P.D., Sanghvi G.V., Kunjadia A.P., Mukhopadhyay P.N., Dave G.S. Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes. SpringerPlus. 2016;5:1–9. doi: 10.1186/s40064-016-3156-7. PubMed DOI PMC
Nyanhongo G., Gomes J., Gübitz G., Zvauya R., Read J., Steiner W. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Res. 2002;36:1449–1456. doi: 10.1016/S0043-1354(01)00365-7. PubMed DOI
Harazono K., Watanabe Y., Nakamura K. Decolorization of azo dye by white-rot basidiomycete Phanerochaete sordida and by its manganese peroxidase. J. Biosci. Bioeng. 2003;5:455–459. doi: 10.1016/S1389-1723(03)80044-0. PubMed DOI
Kariminiaae-Hamedaani H.-R., Sakurai A., Sakakibara M. Decolorization of synthetic dyes by a new manganese peroxidase-producing white rot fungus. Dye. Pigment. 2007;72:157–162. doi: 10.1016/j.dyepig.2005.08.010. DOI
Moreira M.T., Palma C., Mielgo I., Feijoo G., Lema J. In vitro degradation of a polymeric dye (Poly R-478) by manganese peroxidase. Biotechnol. Bioeng. 2001;75:362–368. doi: 10.1002/bit.10052. PubMed DOI
Wesenberg D. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 2003;22:161–187. doi: 10.1016/j.biotechadv.2003.08.011. PubMed DOI
Kotterman M., A Wasseveld R., A Field J. Hydrogen Peroxide Production as a Limiting Factor in Xenobiotic Compound Oxidation by Nitrogen-Sufficient Cultures of Bjerkandera sp. Strain BOS55 Overproducing Peroxidases. Appl. Environ. Microbiol. 1996;62:880–885. doi: 10.1128/AEM.62.3.880-885.1996. PubMed DOI PMC
Reina R., Liers C., García-Romera I., Aranda E. Enzymatic mechanisms and detoxification of dry olive-mill residue by Cyclocybe aegerita, Mycetinis alliaceus and Chondrostereum purpureum. Int. Biodeterior. Biodegradation. 2017;117:89–96. doi: 10.1016/j.ibiod.2016.11.029. DOI
Heinfling A., Bergbauer M., Szewzyk U. Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. Appl. Microbiol. Biotechnol. 1997;48:261–266. doi: 10.1007/s002530051048. DOI
Sodaneath H., Lee J.-I., Yang S.-O., Jung H., Ryu H.W., Cho K.-S. Decolorization of textile dyes in an air-lift bioreactor inoculated with Bjerkandera adusta OBR105. J. Environ. Sci. Heal. Part A. 2017;52:1099–1111. doi: 10.1080/10934529.2017.1340753. PubMed DOI