Simultaneous use of Interphako interference contrast and polarization microscopy in the study of microorganisms

. 2021 Apr ; 66 (2) : 241-246. [epub] 20201125

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33241462

Grantová podpora
LO 1509 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 33241462
DOI 10.1007/s12223-020-00839-9
PII: 10.1007/s12223-020-00839-9
Knihovny.cz E-zdroje

Simultaneous application of polarization microscopy and Interphako interference contrast has been used to study the internal structure of algal cells. The interference contrast technique showed fine cell structures (important is the selection of interference colors according to the Mach-Zehnder interferometer setting). In a polarization microscope, the crossed polarization filters together with the first-order quartz compensator mounted turntable showed the maximum birefringence of the individual structures. Material containing green algae was collected in the villages Sýkořice and Zbečno, Protected Landscape Area (PLA) Křivoklátsko. The objects were studied in a Carl Zeiss Jena NfpK laboratory microscope equipped with an In 160 base body with an Interphako In contrast interference module including a Mach-Zehnder interferometer with variable phase contrast, a special condenser with interchangeable aperture plates, a turntable, a Meopta Praha polarizer, a LOMO Sankt Petersburg analyzer, and a quartz compensator with first-order red and the digital camera DSLR Nikon D 70. Green algae of three orders were studied: Siphonocladales, Zygnematales, and Desmidiales. Anisotropic structures were found in all studied representatives of the green algae of the phylum Chlorophyta. Especially their cell walls showed strong birefringence (in all representatives of these orders). On the other hand, a representative of the order Siphonocladales (the genus Cladophora, Cladophoraceae, Ulvophyceae) was rarely found to display weak birefringent granules of storage substances due to the setting of the Mach-Zehnder interferometer and the use of the first-order compensator (interference colors are intensified). In addition, a very weak birefringence of periphyton cells (microbial biofilm) was found. In the study of the second algae of the genus Spirogyra (Zygnemataceae, Zygnematales, Conjugatophyceae), a strongly birefringent connecting wall between algal cells was found in contrast to the weaker birefringence of the peripheral wall. It was the use of Interphako interference contrast together with polarization filters and a first-order quartz compensator that particularly emphasized the central part of the connecting wall. In the study of the twinned Pleurotaenium algae (Desmidiaceae, Desmidiales, Conjugatophyceae), a strongly birefringent wall was found along the periphery of the cell with a nucleus in the middle part (isthmus). In this narrowing in the center of the cell, a sharply delimited birefringent edge of the cell wall is visible, especially when using Interphako interference contrast along with crossed polarization filters and a first-order quartz compensator. In conclusion, Interphako interference contrast provides a high degree of image contrast in a microscope and, if suitably simultaneously complemented by polarization microscopy (including a first-order quartz compensator), it will allow us to infer some of the composition of the investigated structures. However, working with Interphako interference contrast is considerably more difficult (setting Mach-Zehnder interferometer) than using other contrast techniques (positive and negative phase contrast, color contrast, relief contrast, and dark field).

Zobrazit více v PubMed

Adam H, Czihak G (1964) Arbeitsmethoden der makroskopischen und mikroskopischen Anatomie. Gustav Fischer Verlag, Stuttgart

Beyer H (1954) Das phasenkontrastverfahren in der Mikroskopie. Urania 17:639–640

Bouška V, Kašpar P (1983) Special optical methods (in Czech). Academia, Praha

Brocksch D (1994) Phase-contrast, Nomarski (differential interference) contrast and dark-field microscopy: black and color photomicrography. In: Celis JE (ed) Cell Biology, vol 2. Academic Press, San Diego, pp 5–14

Canter-Lund H, Lund JWG (1995) Freshwater algae, their microscopic world explored. Biopress Ltd, Bristol

Fott B (1967) Cyanobacteria and Algae (In Czech). Academia Press, Praha

Graham LE (1993) The origin of land plants. John Wiley, New York

Graham EL, Wilcox LW (2000) Algae. Prentice Hall, Upper Saddle River

Gregorová M, Fojt B, Vávra V (2002) Microscopy of raw and technical materials (In Czech). Publishing House of Faculty of Sciences of Masaryk University, Brno

Heath JP (2005) Dictionary of Microscopy. Wiley, Chichester

Hindák F, Cyrus Z, Marvan P, Javornický P, Komárek J, Ettl H, Rosa K, Sládečková A, Popovský J, Punčochářová M, Lhotský O (1978) Freshwater algae (in Slovak). Slovak Pedagogical Press, Bratislava

Hoffman R (1977) The modulation contrast microscopy: principles and performance. J Microsc 110:205–222 DOI

Inoué S (2011) Lighting the way in microscopy. J Cell Biol 194:810–811 DOI

Jírovec O, Černý W, Esslová M, Fiala J, Krmář J, Lellák K, Rosický B, Skuhravý V, Straškraba M, Štěpánek O (1958) Zoological techniques (in Czech). State pedagogical Publishing House, Praha

Kozubek M (2017) Reliable cell image analysis, Functional Organization of the Cell Nucleus Symposium. Charles University, Praha 7

Krug W, Rienitz J, Schulz G (1961) Beiträge zur Interferenzmikroskopie. Akamemie Verlag, Berlin

Malacara D (ed) (1992) Optical shop testing. John Wiley and Sons, New York

Piper J (2007) Relief phase contrast: a new technique for phase contrast light microscopy. Microsc Anal Eur 21(108):9–12

Piper J (2013) High grade visualization of stained biological specimens in polarized light. J Adv Microsc Res 8(2):81–92 DOI

Prosser V (1989) Experimental methods of biophysics (in Czech). Academia, Praha

Rulík M, Holá V, Růžička F, Votava M, Baudyšová D, Gallo J, Kaprálová S, Kohušová K, Koukalová D, Kůdela V, Mikeš J, Novotný R, Siglová M, Toršová V, Zimák J (2011) Microbial biofilms (in Czech). Palacký University, Olomouc

Siedentopf H (1907) Die Vorgeschichte der Spiegelkondensoren. Z Wiss Mikrosk 24:257–395

Whittaker P, Boughner DR, Kloner RA (1989) Analysis of healing after myocardial infarction using polarized light microscopy. Am J Pathol 134(4):879–894 PubMed PMC

Wolf J (1954) Microscopical technique (in Czech). State Health Publishing House, Praha

Zernike F (1935) Das Phasenkontrastverfahren beider mikroskopischen Beobachtung. Z Tech Phys 16:454–455

Žižka Z (2012) Simple sets for digital microphotography used and tested in the study of microorganisms. Folia Microbiol 57:509–512 DOI

Žižka Z (2014) Anisotropic structures of some microorganisms studied by polarization microscopy. Folia Microbiol 59:363–368 DOI

Žižka Z (2016) Simultaneous use of relief contrast and polarization microscopy in the study of microorganisms. Fine Mech Opt 61:15–17

Žižka Z (2018a) Concomitant use of polarization and negative phase contrast microscopy for the study of microorganisms. Folia Microbiol 63(4):493–498 DOI

Žižka Z (2018b) Concomitant use of colour phase contrast and polarization microscopy for the study of microorganisms. Fine Mech Opt 63:122–125

Žižka Z (2019) Reconstruction of the portable microscope Meopta BC 28 SV into polarized microscope and its use for the study of microorganisms. Fine Mech Opt 64:25–28

Žižka Z (2020) Simultaneous use of polarization microscopy and dark field techniques in the study of microorganisms. Folia Microbiol in press

Žižka Z, Gabriel J (2015) Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells. Folia Microbiol 60:545–550 DOI

Žižka Z, Hostounský Z, Kálalová S (1999) RCH-microscopy used in microbiological studies. Folia Microbiol 44:328–332 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...