Mathematical model of electromigration allowing the deviation from electroneutrality
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- Double layer, Electric charge, Electromigration, Electroneutrality, Poisson equation,
- MeSH
- Electric Conductivity MeSH
- Electrolytes * MeSH
- Ions MeSH
- Solutions MeSH
- Models, Theoretical * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Electrolytes * MeSH
- Ions MeSH
- Solutions MeSH
The structure of the double layer on the boundary between solid and liquid phases is described by various models, of which the Stern-Gouy-Chapman model is still commonly accepted. Generally, the solid phase is charged, which also causes the distribution of the electric charge in the adjacent diffuse layer in the liquid phase. We propose a new mathematical model of electromigration considering the high deviation from electroneutrality in the diffuse layer of the double layer when the liquid phase is composed of solution of weak multivalent electrolytes of any valence and of any complexity. The mathematical model joins together the Poisson equation, the continuity equation for electric charge, the mass continuity equations, and the modified G-function. The model is able to calculate the volume charge density, electric potential, and concentration profiles of all ionic forms of all electrolytes in the diffuse part of the double layer, which consequently enables to calculate conductivity, pH, and deviation from electroneutrality. The model can easily be implemented into the numerical simulation software such as Comsol. Its outcome is demonstrated by the numerical simulation of the double layer composed of a charged silica surface and an adjacent liquid solution composed of weak multivalent electrolytes. The validity of the model is not limited only to the diffuse part of the double layer but is valid for electromigration of electrolytes in general.
See more in PubMed
Delahay, P., Double Layer and Electrode Kinetics, Interscience, New York, 1965.
Lyklema, J., Fundamentals of Interface and Colloid Science, Vol. II, Academic Press, San Diego, 1995.
Delgado, A. V., Gonzalez-Caballero, F., Hunter, R. J., Koopal, L. K., Lyklema, J., J. Colloid Interface Sci. 2007, 309, 194-224.
Kirby, B. J., Hasselbrink, E. F., Electrophoresis 2004, 25, 187-202.
Potoček, B., Gaš, B., Kenndler, E., Štědrý, M., J. Chromatogr. A 1995, 709, 51-62.
Gaš, B., Štědrý, M., Kenndler, E., J. Chromatogr. A 1995, 709, 63-68.
Lyklema, J., Croat. Chem. Acta 1971, 43, 249-260.
Huang, T. L., Cromatographia 1993, 35, 395-398.
Chang, Ch., Kazoe, Y., Morikawa, K., Mawatari, K., Yang, R., Kitamori, T., Anal. Chem. 2013, 85, 4468-4474.
Conlisk, A. T., McFerran, J., Anal. Chem. 2002, 74, 2139-2150.
Zheng, Z., Hansford, D. J., Conlisk, A. T., Electrophoresis 2003, 24, 3006-3017.
Conlisk, A. T., Electrophoresis 2005, 26, 1896-1912.
Rangharajan, K. K., Fuest, M., Conlisk, A. T., Prakash, S., Microfluid. Nanofluid. 2016, 20, 54.
Hlushkou, D., Perry, J. M., Jacobson, P. J., Tallarek, U., Anal. Chem. 2012, 84, 267-274.
Devereux, O. F., De Bruyn, P. L., Interaction of Plane Parallel Double Layers, MIT Press, Cambridge, 1963.
Trefalt, G., Behrens, S. H., Borkovec, M., Langmuir 2016, 32, 380-400.
Misra, R. P., de Souza, J. P., Blankschtein, D., Bazant, M. Z., Langmuir 2019, 35, 11550-11565.
Liapis, A. I., Grimes, B. A., J. Chromatogr. A 2000, 877, 181-215.
Netz, R. R., Eur. Phys. J. E 2001, 5, 557-574.
Briscoe, W. H., Attard, P., J. Chem. Phys. 2002, 117, 5452-5464.
Pennathur, S., Santiago, J. G., Anal. Chem. 2005, 77, 6772-6781.
Pennathur, S., Santiago, J. G., Anal. Chem. 2005, 77, 6782-6789.
Yuan, Z., Garcia, A. L., Lopez, G. P., Petsev, D. N., Electrophoresis 2007, 28, 595-610.
Bohinc, K., Shrestha, A., Brumen, M., May, S., Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 2012, 85, 031130-1-031130-12.
Eden, A., McCallum, C., Storey, B. D., Pennathur, S., Meinhart, C. D., Phys. Rev. Fluids 2017, 2, 124203-1-124203-14.
Ma, Y., Yeh, L. H., Lin, C. Y., Mei, L., Qian, S., Anal. Chem. 2015, 87, 4508-4514.
Chang, C. C., Kazoe, Y., Morikawa, K., Mawatari, K., Yang, R. J., Kitamori, T., Anal. Chem. 2013, 85, 4468-4474.
Rice, C. L., Whitehead, R., J. Phys. Chem. 1965, 69, 4017-4024.
Burgeen, D., Nakache, F. R., J. Phys. Chem. 1964, 68, 1084-1091.
Martin, M., Guiochon, G., Anal. Chem. 1984, 56, 614-620.
Martin, M., Guiochon, G., Walbroehl, Y., Jorgenson, J. W., Anal. Chem. 1985, 57, 559-561.
Andreev, V. P., Lisin, E. E., Electrophoresis 1992, 13, 832-837.
Kjellander, R., Akesson, T., Jonsson, B., Marcelja, S., J. Chem. Phys. 1992, 97, 1424-1431.
Qu, W., Li, D., J. Colloid Interface Sci. 2000, 224, 397-407.
Hartley, J. W., Roe, J. W., Trans. Faraday Soc. 1940, 35, 101-109.
Baldessari, F., Santiago, J. G., J. Colloid Interface Sci. 2009, 331, 549-549.
Baldessari, F., Santiago, J. G., J. Colloid Interface Sci. 2009, 331, 550-550.
Bottenus, D., Oh, Y. J., Han, S. M., Ivory, C. F., Lab Chip 2009, 9, 219-231.
Chamberlayne, C. F., Zare, R. N., Santiago, J. G., J. Phys. Chem. Lett. 2020, 11, 8302-8306.
Štědrý, M., Jaroš, M., Hruška, V., Gaš, B., Electrophoresis 2004, 25, 3071-3079.
Jaroš, M., Hruška, V., Štědrý, M., Zusková, I., Gaš, B., Electrophoresis 2004, 25, 3080-3085.
Hruška, V., Riesová, M., Gaš, B., Electrophoresis 2012, 33, 923-930.
Malý, M., Dovhunová, M., Dvořák, M., Gerlero, G. S., Kler, P. A., Hruška, V., Dubský, P., Electrophoresis 2019, 40, 683-692.
Hruška, V., Jaroš, M., Gaš, B., Electrophoresis 2006, 27, 984-991.
Hruška, V., Gaš, B., Electrophoresis 2007, 28, 3-14.
Coxon, M., Binder, M. J., J. Chromatogr. 1974, 95, 133-145.
Su, Y., Palusinski, O. A., Fife, P. C., J. Chromatogr. 1987, 405, 77-85.
Palusinski, O. A., Su, Y., Fife, P. C., Electrophoresis 1990, 11, 903-907.