DIANA-miRGen v4: indexing promoters and regulators for more than 1500 microRNAs
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33245765
PubMed Central
PMC7778932
DOI
10.1093/nar/gkaa1060
PII: 6007663
Knihovny.cz E-zdroje
- MeSH
- anotace sekvence MeSH
- buněčné linie MeSH
- databáze nukleových kyselin * MeSH
- genetická transkripce MeSH
- genom * MeSH
- internet MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- počátek transkripce MeSH
- primární buněčná kultura MeSH
- promotorové oblasti (genetika) * MeSH
- sekvence nukleotidů MeSH
- software * MeSH
- transkripční faktory genetika metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
- transkripční faktory MeSH
Deregulation of microRNA (miRNA) expression plays a critical role in the transition from a physiological to a pathological state. The accurate miRNA promoter identification in multiple cell types is a fundamental endeavor towards understanding and characterizing the underlying mechanisms of both physiological as well as pathological conditions. DIANA-miRGen v4 (www.microrna.gr/mirgenv4) provides cell type specific miRNA transcription start sites (TSSs) for over 1500 miRNAs retrieved from the analysis of >1000 cap analysis of gene expression (CAGE) samples corresponding to 133 tissues, cell lines and primary cells available in FANTOM repository. MiRNA TSS locations were associated with transcription factor binding site (TFBSs) annotation, for >280 TFs, derived from analyzing the majority of ENCODE ChIP-Seq datasets. For the first time, clusters of cell types having common miRNA TSSs are characterized and provided through a user friendly interface with multiple layers of customization. DIANA-miRGen v4 significantly improves our understanding of miRNA biogenesis regulation at the transcriptional level by providing a unique integration of high-quality annotations for hundreds of cell specific miRNA promoters with experimentally derived TFBSs.
Central European Institute of Technology Masaryk University Kamenice 735 5 62500 Brno Czech Republic
Department of Computer Science and Biomedical Informatics University of Thessaly Greece
Department of Electrical and Computer Engineering University of Thessaly Volos 38221 Greece
Zobrazit více v PubMed
Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001; 107:823–826. PubMed
Agarwal V., Bell G.W., Nam J.-W., Bartel D.P.. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015; 4:e05005. PubMed PMC
Paraskevopoulou M.D., Georgakilas G., Kostoulas N., Vlachos I.S., Vergoulis T., Reczko M., Filippidis C., Dalamagas T., Hatzigeorgiou A.G.. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013; 41:W169–W173. PubMed PMC
Jones-Rhoades M.W., Bartel D.P., Bartel B.. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 2006; 57:19–53. PubMed
Kloosterman W.P. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res. 2004; 32:6284–6291. PubMed PMC
Lee Y., Kim M., Han J., Yeom K.-H., Lee S., Baek S.H., Kim V.N.. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004; 23:4051–4060. PubMed PMC
Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Rådmark O., Kim S. et al. .. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003; 425:415–419. PubMed
Hutvágner G., McLachlan J., Pasquinelli A.E., Bálint E., Tuschl T., Zamore P.D.. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001; 293:834–838. PubMed
ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 489:57–74. PubMed PMC
Lizio M., Harshbarger J., Shimoji H., Severin J., Kasukawa T., Sahin S., Abugessaisa I., Fukuda S., Hori F., Ishikawa-Kato S. et al. .. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 2015; 16:22. PubMed PMC
Shiraki T., Kondo S., Katayama S., Waki K., Kasukawa T., Kawaji H., Kodzius R., Watahiki A., Nakamura M., Arakawa T. et al. .. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl. Acad. Sci. U.S.A. 2003; 100:15776–15781. PubMed PMC
FANTOM Consortium and the RIKEN PMI and CLST (DGT) Forrest A.R.R., Kawaji H., Rehli M., Baillie J.K., de Hoon M.J.L., Haberle V., Lassmann T., Kulakovskiy I.V., Lizio M. et al. .. A promoter-level mammalian expression atlas. Nature. 2014; 507:462–470. PubMed PMC
ENCODE Project Consortium The ENCODE (ENCyclopedia Of DNA Elements) Project. Science. 2004; 306:636–640. PubMed
Marsico A., Huska M.R., Lasserre J., Hu H., Vucicevic D., Musahl A., Orom U., Vingron M.. PROmiRNA: a new miRNA promoter recognition method uncovers the complex regulation of intronic miRNAs. Genome Biol. 2013; 14:R84. PubMed PMC
Georgakilas G., Vlachos I.S., Paraskevopoulou M.D., Yang P., Zhang Y., Economides A.N., Hatzigeorgiou A.G.. microTSS: accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs. Nat. Commun. 2014; 5:5700. PubMed
Georgakilas G.K., Perdikopanis N., Hatzigeorgiou A.. Solving the transcription start site identification problem with ADAPT-CAGE: a Machine Learning algorithm for analysis of CAGE data. Sci. Rep. 2020; 10:877. PubMed PMC
Yang J.-H., Li J.-H., Jiang S., Zhou H., Qu L.-H.. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res. 2013; 41:D177–D187. PubMed PMC
Friard O., Re A., Taverna D., De Bortoli M., Corá D.. CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinformatics. 2010; 11:435. PubMed PMC
Hamed M., Spaniol C., Nazarieh M., Helms V.. TFmiR: a web server for constructing and analyzing disease-specific transcription factor and miRNA co-regulatory networks. Nucleic Acids Res. 2015; 43:W283–W288. PubMed PMC
Wang S., Li W., Lian B., Liu X., Zhang Y., Dai E., Yu X., Meng F., Jiang W., Li X.. TMREC: a database of transcription factor and MiRNA regulatory cascades in human diseases. PLoS One. 2015; 10:e0125222. PubMed PMC
Wang J., Lu M., Qiu C., Cui Q.. TransmiR: a transcription factor–microRNA regulation database. Nucleic Acids Res. 2010; 38:D119–D122. PubMed PMC
Tong Z., Cui Q., Wang J., Zhou Y.. TransmiR v2.0: an updated transcription factor-microRNA regulation database. Nucleic Acids Res. 2019; 47:D253–D258. PubMed PMC
Guo Z., Maki M., Ding R., Yang Y., Zhang B., Xiong L.. Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Sci. Rep. 2014; 4:5150. PubMed PMC
Georgakilas G., Vlachos I.S., Zagganas K., Vergoulis T., Paraskevopoulou M.D., Kanellos I., Tsanakas P., Dellis D., Fevgas A., Dalamagas T. et al. .. DIANA-miRGen v3.0: accurate characterization of microRNA promoters and their regulators. Nucleic Acids Res. 2016; 44:D190–D195. PubMed PMC
Khan A., Fornes O., Stigliani A., Gheorghe M., Castro-Mondragon J.A., van der Lee R., Bessy A., Chèneby J., Kulkarni S.R., Tan G. et al. .. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018; 46:D1284–D1284. PubMed PMC
Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler D.. The human genome browser at UCSC. Genome Res. 2002; 12:996–1006. PubMed PMC
Vlachos I.S., Paraskevopoulou M.D., Karagkouni D., Georgakilas G., Vergoulis T., Kanellos I., Anastasopoulos I.-L., Maniou S., Karathanou K., Kalfakakou D. et al. .. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 2015; 43:D153–D159. PubMed PMC
Karagkouni D., Paraskevopoulou M.D., Chatzopoulos S., Vlachos I.S., Tastsoglou S., Kanellos I., Papadimitriou D., Kavakiotis I., Maniou S., Skoufos G. et al. .. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res. 2018; 46:D239–D245. PubMed PMC
Vlachos I.S., Zagganas K., Paraskevopoulou M.D., Georgakilas G., Karagkouni D., Vergoulis T., Dalamagas T., Hatzigeorgiou A.G.. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015; 43:W460–W466. PubMed PMC
Paraskevopoulou M.D., Vlachos I.S., Karagkouni D., Georgakilas G., Kanellos I., Vergoulis T., Zagganas K., Tsanakas P., Floros E., Dalamagas T. et al. .. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res. 2016; 44:D231–D238. PubMed PMC
Carninci P. RNA dust: where are the genes. DNA Res. 2010; 17:51–59. PubMed PMC
Takahashi H., Lassmann T., Murata M., Carninci P.. 5′ end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat. Protoc. 2012; 7:542–561. PubMed PMC
Fejes-Toth K., Sotirova V., Sachidanandam R., Assaf G., Hannon G.J., Kapranov P., Foissac S., Willingham A.T., Duttagupta R., Dumais E. et al. .. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs: affymetrix/cold Spring Harbor Laboratory ENCODE Transcriptome Project. Nature. 2009; 457:1028. PubMed PMC
Gan Y., Guan J., Zhou S.. A comparison study on feature selection of DNA structural properties for promoter prediction. BMC Bioinformatics. 2012; 13:4. PubMed PMC
Fukue Y., Sumida N., Nishikawa J.-I., Ohyama T.. Core promoter elements of eukaryotic genes have a highly distinctive mechanical property. Nucleic Acids Res. 2004; 32:5834–5840. PubMed PMC
Kanhere A., Bansal M.. Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Res. 2005; 33:3165–3175. PubMed PMC
Abeel T., Saeys Y., Bonnet E., Rouze P., Van de Peer Y.. Generic eukaryotic core promoter prediction using structural features of DNA. Genome Res. 2008; 18:310–323. PubMed PMC
Kozomara A., Birgaoanu M., Griffiths-Jones S.. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019; 47:D155–D162. PubMed PMC
Zhang Y., Liu T., Meyer C.A., Eeckhoute J., Johnson D.S., Bernstein B.E., Nusbaum C., Myers R.M., Brown M., Li W. et al. .. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9:R137. PubMed PMC
Heinz S., Benner C., Spann N., Bertolino E., Lin Y.C., Laslo P., Cheng J.X., Murre C., Singh H., Glass C.K.. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 2010; 38:576–589. PubMed PMC
Piper J., Elze M.C., Cauchy P., Cockerill P.N., Bonifer C., Ott S.. Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data. Nucleic Acids Res. 2013; 41:e201. PubMed PMC
Bailey T.L., Johnson J., Grant C.E., Noble W.S.. The MEME Suite. Nucleic Acids Res. 2015; 43:W39–W49. PubMed PMC
Zerbino D.R., Achuthan P., Akanni W., Amode M.R., Barrell D., Bhai J., Billis K., Cummins C., Gall A., Girón C.G. et al. .. Ensembl 2018. Nucleic Acids Res. 2018; 46:D754–D761. PubMed PMC
Kawaji H., Lizio M., Itoh M., Kanamori-Katayama M., Kaiho A., Nishiyori-Sueki H., Shin J.W., Kojima-Ishiyama M., Kawano M., Murata M. et al. .. Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing. Genome Res. 2014; 24:708–717. PubMed PMC
Xu J., Chen Y., Olopade O.I.. MYC and breast cancer. Genes Cancer. 2010; 1:629–640. PubMed PMC
Steven A., Seliger B.. Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget. 2016; 7:35454–35465. PubMed PMC
Kentepozidou E., Aitken S.J., Feig C., Stefflova K., Ibarra-Soria X., Odom D.T., Roller M., Flicek P.. Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains. Genome Biol. 2020; 21:5. PubMed PMC