Determination of Body Fat Ratio Standards in Children at Early School Age Using Bioelectric Impedance
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33255595
PubMed Central
PMC7760493
DOI
10.3390/medicina56120641
PII: medicina56120641
Knihovny.cz E-zdroje
- Klíčová slova
- body fat, body mass index, growth chart, prepubescent children, standards,
- MeSH
- dítě MeSH
- elektrická impedance MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- školy * MeSH
- tělesná hmotnost MeSH
- tuková tkáň * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
Background and objectives: Body mass index (BMI) is commonly used to assess the proportionality of body mass; however, there are currently no standards for assessing the weight status of the child population for the needs of epidemiological studies. This study aims to establish bioelectric impedance analysis (BIA) standards for assessing the body weight of children (body fat, visceral fat) using BMI percentile growth charts. Materials and Methods: The study was implemented in a group of 1674 children (816 boys and 858 girls), ages 6 to 11. To classify the subjects at a percentile level, the percentile growth charts from the 6th national anthropological study in the Czech Republic were used. Body composition parameters were ascertained by BIA. Results: Body fat (%) and visceral fat standard values were determined for all age categories. The standards were in three-stages, enabling the determination of underweight, normal weight and overweight children aged 6-11 years. For boys with proportionate body mass, standard body fat values ranging from 14.3-16.0% to 15.5-18.0% were determined, while for girls' values ranging from 16.7-19.4% to 18.3-20.5% were determined, depending on age. As far as visceral fat is concerned, standard values in boys ranging from 30.3-36.9 cm2 to 36.1-44.9 cm2 and in girls 30.3-36.9 cm2 to 36.1-44.9 cm2 were determined, depending on age. Conclusions: Standards for assessing weight status are applicable to children aged 6-11 years, while it can be confirmed that BMI can be considered as an objective tool in assessing body mass and body composition in children.
Faculty of Physical Education and Sport Charles University Praha 6 162 52 Praha Czech Republic
Human Motion Diagnostics Center University of Ostrava 701 03 Ostrava Czech Republic
Zobrazit více v PubMed
Ng M., Fleming T., Robinson M., Thomson B., Graetz N., Margono C. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–781. doi: 10.1016/S0140-6736(14)60460-8. PubMed DOI PMC
Pandita A., Sharma D., Pandita D., Pawar S., Tariq M., Kaul A. Childhood obesity: Prevention is better than cure. Diabetes Metab. Syndr. Obes. 2016;9:83–89. doi: 10.2147/DMSO.S90783. PubMed DOI PMC
Kopecký M. Prevalence of overweight and obesity in children between the ages of 6 and 7 and the attitude of parents towards primary prevention in the Olomouc region. Hygiena. 2016;61:4–10. doi: 10.21101/hygiena.a1394. DOI
Tsigos C., Hainer V., Basdevant A., Finer N., Fried M., Mathus-Vliegen E., Micic D., Maislos M., Roman G., Schutz Y., et al. Management of obesity in adults: European clinical practice guidelines. Obes. Facts. 2008;1:106–116. doi: 10.1159/000126822. PubMed DOI PMC
Bunc V. Obesity—Causes and remedies. Phys. Act. Rev. 2016;4:50–56. doi: 10.16926/par.2016.04.06. DOI
Cole T.J., Faith M.S., Pietrobelli A., Heo M. What is the best measure of adiposity change in growing children: BMI, BMI %, BMI z-score or BMI centile? Eur. J. Clin. Nutr. 2005;59:419–425. doi: 10.1038/sj.ejcn.1602090. PubMed DOI
Inokuchi M., Matsuo N., Takayama J.I., Hasegawa T. BMI z-score is the optimal measure of annual adiposity change in elementary school children. Ann. Hum. Biol. 2011;38:747–751. doi: 10.3109/03014460.2011.620625. PubMed DOI
Verjans-Janssen S.R.B., van de Kolk I., Van Kann D.H.H., Kremers S.P.J., Gerards S.M.P.L. Effectiveness of school-based physical activity and nutrition interventions with direct parental involvement on childrens BMI and energy balance-related behaviors—A systematic review. PLoS ONE. 2018;13:1–24. doi: 10.1371/journal.pone.0204560. PubMed DOI PMC
Heyward V.H., Wagner D.R. Applied Body Composition Assessment. 2nd ed. Human Kinetics; Champaign, IL, USA: 2004. pp. 67–85.
Block G., Dresser C.M., Hartman A.M., Carroll M.D. Nutrient sources in the American diet: Quantitative data from the NHANES II survey. I. Vitamins and minerals. Am. J. Epidemiol. 1985;122:13–26. doi: 10.1093/oxfordjournals.aje.a114072. PubMed DOI
Tremmel M., Gerdtham U.-G., Nilsson P.M., Saha S. Economic Burden of Obesity: A Systematic Literature Review. Int. J. Environ. Res. Public Health. 2017;14:435. doi: 10.3390/ijerph14040435. PubMed DOI PMC
WHO Obesity . Preventing and Managing the Global Epidemic. Report of a WHO Consultation (WHO Technical Report Series 894) WHO; Geneva, Switzerland: 2004. [(accessed on 7 February 2020)]. Available online: http://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/ PubMed
WHO Child Growth Standards . BMI-for-Age. WHO; Geneva, Switzerland: 2019. [(accessed on 7 February 2020)]. Available online: http://www.who.int/childgrowth/standards/bmi_for_age/en/
Vignerová J., Riedlová P., Bláha P., Kobzová J., Krejčovský L., Brabec M., Hrušková M. Growth Charts. 6th Nation-Wide Anthropological Survey of Children and Adolescents 2001 Czech Republic. 1st ed. PřF UK a SZÚ; Prague, Czech Republic: 2006. [(accessed on 7 February 2020)]. pp. 97–137. Available online: http://www.szu.cz/publikace/data/kniha-6-cav-2001-ke-stazeni.
Baumgartner R.N. Body composition in healthy aging. Ann. N. Y. Acad Sci. 2000;904:437–448. doi: 10.1111/j.1749-6632.2000.tb06498.x. PubMed DOI
Gába A., Přidalová M. Age-related changes in body composition in a sample of Czech women aged 18–89 years: A cross-sectional study. Eur. J. Nutr. 2014;53:167–176. doi: 10.1007/s00394-013-0514-x. PubMed DOI PMC
Williams D.P., Going S.B., Lohman T.G., Harsha D.W., Srinivasan S.R., Webber L.S., Berenson G.S. Body fatness and risk for elevated blood pressure, total cholesterol, and serum lipoprotein ratios in children and adolescents. Am. J. Public Health. 1992;82:358–363. doi: 10.2105/AJPH.82.3.358. PubMed DOI PMC
Laurson K.R., Eisenmann J.C., Welk G.J. Development of youth percent body fat standards using receiver operating characteristic curves. Am. J. Prev. Med. 2011;41:93–99. doi: 10.1016/j.amepre.2011.07.003. PubMed DOI
Beaufrère B., Morio B. Fat and protein redistribution with aging: Metabolic considerations. Eur. J. Clin. Nutr. 2000;54:48–53. doi: 10.1038/sj.ejcn.1601025. PubMed DOI
Haberka M., Stolarz-Skrzypek K., Biedroń M., Szóstak-Janiak K., Partyka M., Olszanecka-Glinianowicz M., Gasior Z. Obesity, Visceral Fat, and Hypertension-Related Complications. Metab. Syndr. Relat. Disord. 2018;16:521–529. doi: 10.1089/met.2018.0062. PubMed DOI
Van Gaal L.F., Mertens I.L., De Block C.E. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–880. doi: 10.1038/nature05487. PubMed DOI
Bunc V. A movement intervention as a tool of the influence of physical fitness and health. Trends Sport Sci. 2018;4:209–216.
Bunc V. Walking like a tool of physical fitness and body composition influence. Antropomotoryka. 2012;22:63–72.
Bunc V., Skalská M. Using walking as a tool for fitness and its influence on obesity and overweight individuals. Jacobs J. Obes. 2015;1:1–10.
Lazaar N., Aucouturier J., Ratel S., Rance M., Meyer M., Duché P. Effect of physical activity intervention on body composition in young children: Influence of body mass index status and gender. Acta Paediatr. 2007;96:1315–1320. doi: 10.1111/j.1651-2227.2007.00426.x. PubMed DOI PMC
Roriz D.E., Oliveira M.S., Teixeira Seabra A.F., Ribeiro Maia J.A. Effects of a recreational physical activity summer camp on body composition, metabolic syndrome and physical fitness in obese children. J. Sports Med. Phys. Fit. 2016;56:933–938. PubMed
Eisenmann J.C., Heelan K.A., Welk J.G. Assessing body composition among 3- to 8-year-old children: Anthropometry, BIA, and DXA. Obes. Res. 2004;12:1633–1640. doi: 10.1038/oby.2004.203. PubMed DOI
Sergi G., De Rui M., Stubbs B., Veronese N., Manzato E. Measurement of lean body mass using bioelectrical impedance analysis: A consideration of the pros and cons. Aging Clin. Exp. Res. 2017;29:591–597. doi: 10.1007/s40520-016-0622-6. PubMed DOI
Kutáč P., Kopecký M. Comparison of body fat using various bioelectrical impedance analyzers in university students. Acta Gymnica. 2015;45:177–186. doi: 10.5507/ag.2015.021. DOI
Ceccarelli G., Bellato M., Zago M., Cusella G., Sforza C., Lovecchio N. BMI and inverted BMI as predictors of fat mass in young people: A comparison across the ages. Ann. Hum. Biol. 2020;47:237–243. doi: 10.1080/03014460.2020.1738551. PubMed DOI
Laurson K.R., Eisenmann J.C., Welk G.J. Body Mass Index Standards Based on Agreement with Health-Related Body Fat. Am. J. Prev. Med. 2011;41:100–105. doi: 10.1016/j.amepre.2011.07.004. PubMed DOI
Czech Statistical Office . Statistics. 2018. ČSÚ; Praha, Czech Republic: 2018. [(accessed on 20 February 2020)]. Available online: https://vdb.czso.cz/vdbvo2/faces/index.jsf?page=vystup-objekt&pvo=DEM01&z=T&f=TABULKA&skupId=606&katalog=30845&pvo=DEM01&str=v33&evo=v866_!_VUZEMI97-100_1&c=v3~2__RP2019MP12DP31.
Mirwald R.L., Baxter-Jones A.D., Bailey D.A., Beunen G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002;34:689–694. PubMed
Müller L., Müller E., Hildebrandt C., Kapelari K., Raschner C. The assessment of biological maturation for talent selection—Which method can be used? Sportverletz Sportschaden. 2015;29:56–63. PubMed
Vignerová J., Lhotská L., Bláha P., Roth Z. Growth of the Czech child population 0–18 years compared to the World Health Organization growth reference. Am. J. Hum. Biol. 1997;9:459–468. doi: 10.1002/(SICI)1520-6300(1997)9:4<459::AID-AJHB5>3.0.CO;2-R. PubMed DOI
Mialich M.S., Sicchieri J.M.F., Junior A.A.J. Analysis of Body Composition: A Critical Review of the Use of Bioelectrical Impedance. Anal. Int. J. Clin. Nutr. 2014;2:1–10.
Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Lawrence Erlbaum Associates; Mahwah, NJ, USA: 1988. pp. 273–288.
Dong Y., Jan C., Ma Y., Dong B., Zou Z., Yang Y., Xu R., Song Y., Ma J., Sawyer S.M., et al. Economic development and the nutritional status of Chinese school-aged children and adolescents from 1995 to 2014: An analysis of five successive national surveys. Lancet Diabetes Endocrinol. 2019;7:288–299. doi: 10.1016/S2213-8587(19)30075-0. PubMed DOI
Kutáč P., Jurková S., Farana R. Morphological characteristics of young female artistic gymnasts from the Czech Republic. Sci. Gym. J. 2019;11:57–66.
Skår A., Meza T.J., Fredriksen P.M. Development of weight and height in Norwegian children: The Health Oriented Pedagogical Project (HOPP) Scand. J. Public Health. 2018;46:3–11. doi: 10.1177/1403494818769852. PubMed DOI
Malina R.M., Bouchard C., Bar-Or O. Growth, Maturation, and Physical Activity. 2nd ed. Human Kinetics; Champaign, IL, USA: 2004. pp. 41–81.
Wijnhoven T.M.A., van Raaij J.M.A., Spinelli A., Rito A.I., Hovengen R., Kunesova R., Starc G., Rutter H., Sjöberg A., Petrauskiene A., et al. WHO European childhood obesity surveillance initiative 2008: Weight, height and body mass index in 6–9-year-old children. Pediatr. Obes. 2012;8:79–97. doi: 10.1111/j.2047-6310.2012.00090.x. PubMed DOI
WHO . Prevalence of Overweight and Obesity in Children and Adolescents. WHO; Geneva, Switzerland: 2009. [(accessed on 25 February 2020)]. Available online: http://www.euro.who.int/__data/assets/pdf_file/0005/96980/2.3.-Prevalence-of-overweight-and-obesity-EDITED_layouted_V3.pdf?ua=1.
Dabas A., Seth A. Prevention and Management of Childhood Obesity. Indian J. Pediatr. 2018;85:546–553. doi: 10.1007/s12098-018-2636-x. PubMed DOI
Morimoto A., Nishimura R., Sano H., Matsudaira T., Miyashita Y., Shirasawa T., Koide S., Takahashi E., Tajima N. Gender differences in the relationship between percent body fat(%BF) and body mass index (BMI) in Japanese children. Diabetes Res. Clin. Pract. 2007;78:123–125. doi: 10.1016/j.diabres.2007.02.022. PubMed DOI
Hunt L.P., Ford A., Sabin M.A., Crowne E.C., Shield J.P. Clinical measures of adiposity and percentage fat loss: Which measure most accurately reflects fat loss and what should we aim for? Arch. Dis. Child. 2007;92:399–403. doi: 10.1136/adc.2006.103986. PubMed DOI PMC