Experiments and Numerical Simulations of the Annealing Temperature Influence on the Residual Stresses Level in S700MC Steel Welded Elements

. 2020 Nov 22 ; 13 (22) : . [epub] 20201122

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33266492

Grantová podpora
Funding This publication was co-funded by the statutory grant of the Faculty of Mechanical Engineering at the Silesian University of Technology in 2020. Politechnika Śląska

The article presents the results of research on the influence of temperature and time changes of the annealing process on the values and distribution of stresses in the simulated heat-affected zone of S700MC steel welded joints. For this purpose, tests were carried out on a thermal cycle simulator, as well as heating the prepared samples in accordance with the recorded welding thermal cycles, and then annealing at temperatures from 200 to 550 °C. The stresses values in the tested samples before and after the annealing process were measured by using X-ray diffraction (XRD). The performed tests were verified with the results of numerical analyses using the finite element method (FEM) performed in the VisualWeld (SYSWELD) environment as, on the one hand, the verification of the obtained results, and, on the other hand, the source of data for the development of a methodology for conducting analyses of heat treatment processes of S700MC steel welded structures. Also presented are three examples of numerical analyses for Gas Metal Arc (GMAW), laser and hybrid welding and then the annealing process of the obtained joints at selected temperatures. The main purpose of the work was to broaden the knowledge on the influence of annealing parameters on the values and distribution of stresses in welded joints, but also to signal the possibility of using modern software in engineering practice.

Zobrazit více v PubMed

Chmielewski T., Golański D. The role of welding in the remanufacturing process. Weld. Int. 2015;29:861–864. doi: 10.1080/09507116.2014.937604. DOI

Shipitsyn S.Y., Babaskin Y.Z., Kirchu I.F., Smolyakova L.G., Zolotar N.Y. Microalloyed steel for railroad wheels. Steel Transl. 2008;38:782–785. doi: 10.3103/S0967091208090222. DOI

Żuk M., Górka J., Jamrozik W. Simulated Heat-Affected Zone of Steel 4330V. Mater. Perform. Charact. 2019;8:606–613. doi: 10.1520/MPC20190058. DOI

Zhao M.-C., Yang K., Shan Y. The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel. Mater. Sci. Eng. A. 2002;335:14–20. doi: 10.1016/S0921-5093(01)01904-9. DOI

Górka J. Microstructure and properties of the high-temperature (HAZ) of thermo-mechanically treated S700MC high-yield-strength steel. Mater. Tech. 2016;50:616–621. doi: 10.17222/mit.2015.123. DOI

Adamczyk J., Grajcar A. Structure and mechanical properties of DP-type and TRIP-type sheets obtained after the thermomechanical processing. J. Mater. Process. Technol. 2005:267–274. doi: 10.1016/j.jmatprotec.2005.02.032. DOI

Willms R. High strength steel for steel constructions; Proceedings of the Nordic Steel 2009; Malmö, Sweden. 2–4 September 2009; pp. 597–604.

Miki C., Homma K., Tominaga T. High strength and high performance steels and their use in bridge structures. J. Constr. Steel Res. 2002;58:3–20. doi: 10.1016/S0143-974X(01)00028-1. DOI

Rakshe B., Patel J. Modern high strength Nb-bearing structural steels, Forming processes. [(accessed on 4 November 2020)]; Available online: http://millennium-steel.com/wp-content/uploads/articles/pdf/2010%20India/pp69-72%20MSI10.pdf.

Wang S.H., Chiang C.C., Chan L.I. Effect of initial microstructure on the creep behaviour of TMCP EH36 and S490MC steels. Mater. Sci. Eng. A. 2003;344:288–295. doi: 10.1016/S0921-5093(02)00425-2. DOI

Wang G.R., Lau T.W., Weatherly G.C., North T.H. Weld thermal cycles and precipitation effects in Ti-V-containing HSLA steels. Met. Mater. Trans. A. 1989;20:2093–2100. doi: 10.1007/BF02650295. DOI

Górka J. Welding thermal cycle-triggered precipitation processes in steel S700MC subjected to the thermo-mechanical control processing. Arch. Met. Mater. 2017;62:321–326. doi: 10.1515/amm-2017-0048. DOI

Górka J. Assessment of the Weldability of T-Welded Joints in 10 mm Thick TMCP Steel Using Laser Beam. Mater. 2018;11:1192. doi: 10.3390/ma11071192. PubMed DOI PMC

Shin Y., Kang S., Lee H. Fracture characteristics of TMCP and QT steel weldments with respect to crack length. Mater. Sci. Eng. A. 2006;434:365–371. doi: 10.1016/j.msea.2006.07.076. DOI

Park K.S., Cho Y.H. Comparison of Fatigue Properties of Welded TMCP Steels and Normalized Steel. Pohang University of Science and Technology; Pohang, Korea: 2003.

Yurioka M. TMCP steel and their welding. Weld. World. 1995;35:375–390.

De Meester B. The Weldability of Modern Structural TMCP Steels. ISIJ Int. 1997;37:537–551. doi: 10.2355/isijinternational.37.537. DOI

Porter D., Laukkanen A., Nevasmaa P., Rahka K., Wallin K. Performance of TMCP steel with respect to mechanical properties after cold forming and post-forming heat treatment. Int. J. Press. Vessel. Pip. 2004;81:867–877. doi: 10.1016/j.ijpvp.2004.07.006. DOI

[(accessed on 4 November 2020)]; Available online: https://www.salzgitter-flachstahl.de/en/products/hot-rolled-products/steel-grades/high-strength-steels-for-cold-forming-thermomechanically-rolled.html.

Górka J., Janicki D., Fidali M., Jamrozik W. Thermographic Assessment of the HAZ Properties and Structure of Thermomechanically Treated Steel. Int. J. Thermophys. 2017;38:183. doi: 10.1007/s10765-017-2320-9. DOI

Kik T., Górka J., Kotarska A., Poloczek T. Numerical Verification of Tests on the Influence of the Imposed Thermal Cycles on the Structure and Properties of the S700MC Heat-Affected Zone. Met. 2020;10:974. doi: 10.3390/met10070974. DOI

Lisiecki A. Welding of Thermomechanically Rolled Fine-Grain Steel by Different Types of Lasers/ Spawanie Stali Drobnoziarnistej Walcowanej Termomechanicznie Laserami Różnego Typu. Arch. Met. Mater. 2014;59:1625–1631. doi: 10.2478/amm-2014-0276. DOI

Fydrych D., Łabanowski J., Rogalski G., Haras J., Tomków J., Świerczyńska A., Jakóbczak P., Kostro Ł. Weldability of S500MC Steel in Underwater Conditions. Adv. Mater. Sci. 2014;14:37–45. doi: 10.2478/adms-2014-0008. DOI

Mičian M., Harmaniak D., Novy F., Winczek J., Moravec J., Trško L. Effect of the t8/5 Cooling Time on the Properties of S960MC Steel in the HAZ of Welded Joints Evaluated by Thermal Physical Simulation. Metals. 2020;10:229. doi: 10.3390/met10020229. DOI

Skowrońska B., Chmielewski T., Golański D., Szulc J. Weldability of S700MC steel welded with the hybrid plasma. Manuf. Rev. 2020;7:4. doi: 10.1051/mfreview/2020001. DOI

Fydrych D., Łabanowski J., Rogalski G. Weldability of high strength steels in wet welding conditions. Pol. Marit. Res. 2013;20:67–73. doi: 10.2478/pomr-2013-0018. DOI

Skowrońska B., Szulc J., Chmielewski T., Sałaciński T., Swiercz R. Properties and microstructure of hybrid Plasma+MAG welded joints of thermomechanically treated S700MC steel; Proceedings of the 27th Anniversary International Conference on Metallurgy and Materials (METAL); Brno, Czech Republic. 23–25 May 2018.

Chang K.-H., Lee C.-H., Park K.-T., Um T.-H. Experimental and numerical investigations on residual stresses in a multi-pass butt-welded high strength SM570-TMCP steel plate. Int. J. Steel Struct. 2011;11:315–324. doi: 10.1007/s13296-011-3006-y. DOI

Danielewski H., Skrzypczyk A. Steel Sheets Laser Lap Joint Welding—Process Analysis. Materials. 2020;13:2258. doi: 10.3390/ma13102258. PubMed DOI PMC

Perić M., Nižetić S., Tonković Z., Garašić I., Horvat I., Boras I. Numerical Simulation and Experimental Investigation of Temperature and Residual Stress Distributions in a Circular Patch Welded Structure. Energies. 2020;13:5423. doi: 10.3390/en13205423. DOI

Kik T. Computational Techniques in Numerical Simulations of Arc and Laser Welding Processes. Materials. 2020;13:608. doi: 10.3390/ma13030608. PubMed DOI PMC

Sysweld manual ESI Group . Welding Simulation User Guide. Sysweld manual ESI Group; Paris, France: 2016.

Kik T., Górka J. Numerical Simulations of Laser and Hybrid S700MC T-Joint Welding. Materials. 2019;12:516. doi: 10.3390/ma12030516. PubMed DOI PMC

Kik T., Górka J. Laser Technology 2018: Progress and Applications of Lasers, Proceedings of SPIE. Volume 10974. SPIE; Bellingham, WA, USA: 2018. Numerical Simulations of S700MC Laser and Hybrid Welding. Article Number: UNSP 109740K. DOI

Kik T. Heat Source Models in Numerical Simulations of Laser Welding. Materials. 2020;13:2653. doi: 10.3390/ma13112653. PubMed DOI PMC

Kik T., Moravec J., Novakova I. New Method of Processing Heat Treatment Experiments with Numerical Simulation Support. Modern Technologies in Industrial Engineering V; Proceedings of the ModTech 2017 International Conference; Sibiu, Romania. 14–17 June 2017.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...