Sources and space-time distribution of the electromagnetic pulses in experiments on inertial confinement fusion and laser-plasma acceleration
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33280560
PubMed Central
PMC7741013
DOI
10.1098/rsta.2020.0022
Knihovny.cz E-zdroje
- Klíčová slova
- EMP, RF microwaves, electromagnetic pulses, inertial confinement fusion, laser–matter interaction, laser–plasma acceleration,
- Publikační typ
- časopisecké články MeSH
When high-energy and high-power lasers interact with matter, a significant part of the incoming laser energy is transformed into transient electromagnetic pulses (EMPs) in the range of radiofrequencies and microwaves. These fields can reach high intensities and can potentially represent a significative danger for the electronic devices placed near the interaction point. Thus, the comprehension of the origin of these electromagnetic fields and of their distribution is of primary importance for the safe operation of high-power and high-energy laser facilities, but also for the possible use of these high fields in several promising applications. A recognized main source of EMPs is the target positive charging caused by the fast-electron emission due to laser-plasma interactions. The fast charging induces high neutralization currents from the conductive walls of the vacuum chamber through the target holder. However, other mechanisms related to the laser-target interaction are also capable of generating intense electromagnetic fields. Several possible sources of EMPs are discussed here and compared for high-energy and high-intensity laser-matter interactions, typical for inertial confinement fusion and laser-plasma acceleration. The possible effects on the electromagnetic field distribution within the experimental chamber, due to particle beams and plasma emitted from the target, are also described. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.
AWE plc Aldermaston Reading Berkshire RG7 4PR UK
CELIA University of Bordeaux CNRS CEA 33405 Talence France
Central Laser Facility Rutherford Appleton Laboratory Chilton Didcot STFC UKRI Oxfordshire UK
ELI Beamlines Institute of Physics Czech Academy of Sciences 25241 Dolní Břežany Czech Republic
INRS EMT Varennes Québec Canada
Institute of Physics ASCR Prague 8 Czech Republic
Kapteos Alpespace bât Cleanspace 354 voie Magellan 73800 Sainte Hélène du Lac France
The Blackett Laboratory Imperial College London Prince Consort Road London SW7 2AZ UK
Università d Roma La Sapienza Piazzale Aldo Moro 5 Roma Italy
Zobrazit více v PubMed
Consoli F, et al. 2020. Laser produced electromagnetic pulses: generation, detection and mitigation. High Pow. Laser Sci. Engin. 8, e22 (10.1017/hpl.2020.13) DOI
Prodyn Technologies. 2020 Prodyn Product Catalogue. Available at www.prodyntech.com .
Gibbon P. 2005. Short pulse laser interactions with matter: an introduction. London, UK: Imperial College Press.
Dubois J-L, et al. 2014. Target charging in short-pulse-laser–plasma experiments. Phys. Rev. E 89, 013102 (10.1103/PhysRevE.89.013102) PubMed DOI
Poyé A, et al. 2015. Dynamic model of target charging by short laser pulse interactions. Phys. Rev. E 92, 043107 (10.1103/PhysRevE.92.043107) PubMed DOI
Poyé A, et al. 2015. Physics of giant electromagnetic pulse generation in short-pulse laser experiments. Phys. Rev. E 91, 043106 (10.1103/physreve.97.019903). see also Erratum: 2018 Phys. Rev. E 97, 019903(E). PubMed DOI
Balanis CA. 1997. Antenna theory: analysis and design, 2nd edn New York, NY: Wiley.
Consoli F, De Angelis R, De Marco M, Krasa J, Cikhardt J, Pfeifer M, Margarone D, Klir D, Dudzak R. 2018. EMP characterization at PALS on solid-target experiments. Plasma Phys. Control. Fusion 60, 105006 (10.1088/1361-6587/aad709) DOI
Cikhardt J, et al. 2014. Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS. Rev. Sci. Instrum. 85, 103507 (10.1063/1.4898016) PubMed DOI
Macchi A, Borghesi M, Passoni M. 2013. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751–793. (10.1103/RevModPhys.85.751) DOI
Jackson JD. 1998. Classical electrodynamics, 3rd edn Hoboken, NJ: John Wiley and Sons.
Pompili R, et al. 2018. Ultrafast evolution of electric fields from high-intensity laser-matter interactions. Sci. Rep. 8, 3243 (10.1038/s41598-018-21711-4) PubMed DOI PMC
Herzer S, et al. 2018. An investigation on THz yield from laser-produced solid density plasmas at relativistic laser intensities. New J. Phys. 20, 063019 (10.1088/1367-2630/aaada0) DOI
Higgins D, Lee K, Marin L. 1978. System-generated EMP. IEEE Trans. Antennas Propagat. 26, 14–22. (10.1109/TAP.1978.1141797) DOI
Consoli F, De Angelis R, Duvillaret L, Andreoli PL, Cipriani M, Cristofari G, Di Giorgio G, Ingenito F, Verona C. 2016. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime. Sci. Rep. 6, 27889 (10.1038/srep27889) PubMed DOI PMC
Consoli F, et al. In preparation EMP contributions in intense nanosecond laser-matter interactions.
Consoli F, et al. In preparation Measurements of EMP fields at PALS laser facility by dielectric probes.
Consoli F, et al. 2019. Generation of intense quasi-electrostatic fields due to deposition of particles accelerated by petawatt-range laser-matter interactions. Sci. Rep. 9, 8551 (10.1038/s41598-019-44937-2) PubMed DOI PMC
Pompili R, et al. 2016. Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions. Sci. Rep. 6, 35000 (10.1038/srep35000) PubMed DOI PMC
Krása J, et al. 2020. Effect of expanding plasma on propagation of electromagnetic pulses by laser-plasma interaction. Plasma Phys. Control. Fusion 62, 025021 (10.1088/1361-6587/ab5c4e) DOI