Bead-based multiplex detection of dengue biomarkers in a portable imaging device
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
33282481
PubMed Central
PMC7687939
DOI
10.1364/boe.403803
PII: 403803
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world. Differential diagnosis is a crucial step for the management of the disease and its epidemiology. Point-of-care testing of blood-borne dengue biomarkers provides an advantageous approach in many health care settings, and the ability to follow more than one biomarker at once could significantly improve the management of the disease. Bead-based multiplex technologies (suspension array) can measure multiple biomarker targets simultaneously by using recognition molecules immobilized on microsphere beads. The overarching objective of our work is to develop a portable detection device for the simultaneous measurement of multiple biomarkers important in dengue diagnosis, monitoring and treatment. Here, we present a bead-based assay for the detection of one of the four serotypes of dengue virus non-structural protein (DENV-NS1) as well as its cognate human IgG. In this system, the fluorescent microspheres containing the classification fluorophore and detection fluorophore are imaged through a microfluidic chip using an infinity-corrected microscope system. Calibration curves were plotted for median fluorescence intensity against known concentrations of DENV-NS1 protein and anti-NS1 human IgG. The limit of quantitation was 7.8 ng/mL and 15.6 ng/mL, respectively. The results of this study demonstrate the feasibility of the multiplex detection of dengue biomarkers and present its analytical performance parameters. The proposed imaging device holds potential for point-of-care testing of biomarkers on a highly portable system, and it may facilitate the diagnosis and prevention of dengue as well as other infectious diseases.
Centre for Nano Science and Engineering Indian Institute of Science Bengaluru Karnataka India
Department of Electrical and Computer Engineering University of Toronto ON Canada
DIANA Biotechnologies s r o Vestec 252 50 Czech Republic
Donnelly Centre and Department of Medical Genetics University of Toronto ON Canada
Lawrence S Bloomberg Faculty of Nursing University of Toronto ON Canada
TCS Research and Innovation Tata Consultancy Services Bengaluru Karnataka India
See more in PubMed
Darwish N. T., Sekaran S. D., Khor S. M., “Point-of-care tests: a review of advances in the emerging diagnostic tools for dengue virus infection,” Sens. Actuators, B 255, 3316–3331 (2018).10.1016/j.snb.2017.09.159 DOI
Normile D., “Surprising New Dengue Virus Throws a Spanner in Disease Control Efforts,” Science 342(6157), 415 (2013).10.1126/science.342.6157.415 PubMed DOI
Pang J., Chia P. Y., Lye D. C., Leo Y. S., “Progress and Challenges towards Point-of-Care Diagnostic Development for Dengue,” J. Clin. Microbiol. 55(12), 3339–3349 (2017).10.1128/JCM.00707-17 PubMed DOI PMC
“Dengue: guidelines for diagnosis, treatment, prevention and control,” (World Health Organization, 2009). PubMed
Lee H., Ryu J. H., Park H. S., Park K. H., Bae H., Yun S., Choi A. R., Cho S. Y., Park C., Lee D. G., Lim J., Lee J., Lee S., Shin S., Park H., Oh E. J., “Comparison of Six Commercial Diagnostic Tests for the Detection of Dengue Virus Non-Structural-1 Antigen and IgM/IgG Antibodies,” Ann. Lab. Med. 39(6), 566–571 (2019).10.3343/alm.2019.39.6.566 PubMed DOI PMC
Simmons C. P., McPherson K., Van Vinh Chau N., Hoai Tam D. T., Young P., Mackenzie J., Wills B., “Recent advances in dengue pathogenesis and clinical management,” Vaccine 33(50), 7061–7068 (2015).10.1016/j.vaccine.2015.09.103 PubMed DOI
Conroy A. L., Gelvez M., Hawkes M., Rajwans N., Tran V., Liles W. C., Villar-Centeno L. A., Kain K. C., “Host biomarkers are associated with progression to dengue haemorrhagic fever: a nested case-control study,” Int. J. Infect. Dis. 40, 45–53 (2015).10.1016/j.ijid.2015.07.027 PubMed DOI
Koraka P., Burghoorn-Maas C. P., Falconar A., Setiati T. E., Djamiatun K., Groen J., Osterhaus A. D., “Detection of immune-complex-dissociated nonstructural-1 antigen in patients with acute dengue virus infections,” J. Clin. Microbiol. 41(9), 4154–4159 (2003).10.1128/JCM.41.9.4154-4159.2003 PubMed DOI PMC
Wang S. M., Sekaran S. D., “Early Diagnosis of Dengue Infection Using a Commercial Dengue Duo Rapid Test Kit for the Detection of NS1, IGM, and IGG,” Am. J. Trop. Med. Hyg. 83(3), 690–695 (2010).10.4269/ajtmh.2010.10-0117 PubMed DOI PMC
Blacksell S. D., Jarman R. G., Bailey M. S., Tanganuchitcharnchai A., Jenjaroen K., Gibbons R. V., Paris D. H., Premaratna R., de Silva H. J., Lalloo D. G., Day N. P., “Evaluation of six commercial point-of-care tests for diagnosis of acute dengue infections: the need for combining NS1 antigen and IgM/IgG antibody detection to achieve acceptable levels of accuracy,” Clin. Vaccine Immunol. 18(12), 2095–2101 (2011).10.1128/CVI.05285-11 PubMed DOI PMC
Allonso D., Meneses M. D., Fernandes C. A., Ferreira D. F., Mohana-Borges R., “Assessing positivity and circulating levels of NS1 in samples from a 2012 dengue outbreak in Rio de Janeiro, Brazil,” PLoS One 9(11), e113634 (2014).10.1371/journal.pone.0113634 PubMed DOI PMC
Hernández-Neuta I., Neumann F., Brightmeyer J., Ba Tis T., Madaboosi N., Wei Q., Ozcan A., Nilsson M., “Smartphone-based clinical diagnostics: towards democratization of evidence-based health care,” J. Intern. Med. 285(1), 19–39 (2019).10.1111/joim.12820 PubMed DOI PMC
Wang R., Ongagna-Yhombi S. Y., Lu Z., Centeno-Tablante E., Colt S., Cao X., Ren Y., Cardenas W. B., Mehta S., Erickson D., “Rapid Diagnostic Platform for Colorimetric Differential Detection of Dengue and Chikungunya Viral Infections,” Anal. Chem. 91(8), 5415–5423 (2019).10.1021/acs.analchem.9b00704 PubMed DOI PMC
Ye H., Xia X., “Enhancing the sensitivity of colorimetric lateral flow assay (CLFA) through signal amplification techniques,” J. Mater. Chem. B 6(44), 7102–7111 (2018).10.1039/C8TB01603H PubMed DOI
Kozel T. R., Burnham-Marusich A. R., “Point-of-Care Testing for Infectious Diseases: Past, Present, and Future,” J. Clin. Microbiol. 55(8), 2313–2320 (2017).10.1128/JCM.00476-17 PubMed DOI PMC
Oeschger T., McCloskey D., Kopparthy V., Singh A., Erickson D., “Point of care technologies for sepsis diagnosis and treatment,” Lab. Chip. 19(5), 728–737 (2019).10.1039/C8LC01102H PubMed DOI PMC
Ahmadivand A., Gerislioglu B., Manickam P., Kaushik A., Bhansali S., Nair M., Pala N., “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).10.1021/acssensors.7b00478 PubMed DOI
Ahmadivand A., Gerislioglu B., Tomitaka A., Manickam P., Kaushik A., Bhansali S., Nair M., Pala N., “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).10.1364/BOE.9.000373 PubMed DOI PMC
Zhu H., Mavandadi S., Coskun A. F., Yaglidere O., Ozcan A., “Optofluidic fluorescent imaging cytometry on a cell phone,” Anal. Chem. 83(17), 6641–6647 (2011).10.1021/ac201587a PubMed DOI PMC
Rivenson Y., Ceylan Koydemir H., Wang H., Wei Z., Ren Z., Günaydın H., Zhang Y., Gorocs Z., Liang K., Tseng D., “Deep learning enhanced mobile-phone microscopy,” ACS Photonics 5(6), 2354–2364 (2018).10.1021/acsphotonics.8b00146 DOI
Vietz C., Schutte M. L., Wei Q., Richter L., Lalkens B., Ozcan A., Tinnefeld P., Acuna G. P., “Benchmarking Smartphone Fluorescence-Based Microscopy with DNA Origami Nanobeads: Reducing the Gap toward Single-Molecule Sensitivity,” ACS Omega 4(1), 637–642 (2019).10.1021/acsomega.8b03136 PubMed DOI PMC
Snow J. W., Koydemir H. C., Karinca D. K., Liang K., Tseng D., Ozcan A., “Rapid imaging, detection, and quantification of Nosema ceranae spores in honey bees using mobile phone-based fluorescence microscopy,” Lab. Chip. 19(5), 789–797 (2019).10.1039/C8LC01342J PubMed DOI
Leng Y., Sun K., Chen X., Li W., “Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection,” Chem. Soc. Rev. 44(15), 5552–5595 (2015).10.1039/C4CS00382A PubMed DOI PMC
Graham H., Chandler D. J., Dunbar S. A., “The genesis and evolution of bead-based multiplexing,” Methods 158, 2–11 (2019).10.1016/j.ymeth.2019.01.007 PubMed DOI
Dincer C., Bruch R., Kling A., Dittrich P. S., Urban G. A., “Multiplexed point-of-care testing–xPOCT,” Trends Biotechnol. 35(8), 728–742 (2017).10.1016/j.tibtech.2017.03.013 PubMed DOI PMC
Rho J., Jang W., Hwang I., Lee D., Lee C. H., Chung T. D., “Multiplex immunoassays using virus-tethered gold microspheres by DC impedance-based flow cytometry,” Biosens. Bioelectron. 102, 121–128 (2018).10.1016/j.bios.2017.11.027 PubMed DOI
Morgan E., Varro R., Sepulveda H., Ember J. A., Apgar J., Wilson J., Lowe L., Chen R., Shivraj L., Agadir A., “Cytometric bead array: a multiplexed assay platform with applications in various areas of biology,” Clin. Immunol. (Amsterdam, Neth.) 110(3), 252–266 (2004).10.1016/j.clim.2003.11.017 PubMed DOI
Dou J. J., Aitchison J. S., Chen L., Nayyar R., “Portable point-of-care blood analysis system for global health,” in SPIE BiOS: Optics and Biophotonics in Low-Resource Settings II (International Society for Optics and Photonics; 2016), p. 96990M.
Jagadeesh S., Chen L., Aitchison S., “Fluorescent detection of C-reactive protein using polyamide beads,” in SPIE BiOS: Optical Diagnostics and Sensing XVI: Toward Point-of-Care Diagnostics (International Society for Optics and Photonics; 2016), p. 971505.
Fellouse F. A., Esaki K., Birtalan S., Raptis D., Cancasci V. J., Koide A., Jhurani P., Vasser M., Wiesmann C., Kossiakoff A. A., Koide S., Sidhu S. S., “High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries,” J. Mol. Biol. 373(4), 924–940 (2007).10.1016/j.jmb.2007.08.005 PubMed DOI
Kong W., Xiao C., Ying G., Liu X., Zhao X., Wang R., Wan L., Yang M., “Magnetic microspheres-based cytometric bead array assay for highly sensitive detection of ochratoxin A,” Biosens. Bioelectron. 94, 420–428 (2017).10.1016/j.bios.2017.03.025 PubMed DOI
Shrirao A. B., Fritz Z., Novik E. M., Yarmush G. M., Schloss R. S., Zahn J. D., Yarmush M. L., “Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification,” Technology 6(1), 1–23 (2018).10.1142/S2339547818300019 PubMed DOI PMC
Yang S. Y., Lien K. Y., Huang K. J., Lei H. Y., Lee G. B., “Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection,” Biosens. Bioelectron. 24(4), 855–862 (2008).10.1016/j.bios.2008.07.019 PubMed DOI
Garg S., “A Multiplexed, Point-of-Care Detection System for Dengue,” in Department of Electrical and Computer Engineering (University of Toronto, 2019).
Garg S., Yuan R. X., Gopalsamy A., Fellouse F. A., Sidhu S. S., Dou J., Aitchison J. S., “A Multiplexed, Point-of-Care Sensing for Dengue,” in 2019 IEEE SENSORS (2019), pp. 1–4.
Alcon S., Talarmin A., Debruyne M., Falconar A., Deubel V., Flamand M., “Enzyme-linked immunosorbent assay specific to Dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections,” J. Clin. Microbiol. 40(2), 376–381 (2002).10.1128/JCM.40.02.376-381.2002 PubMed DOI PMC
Wang S. M., Sekaran S. D., “Early diagnosis of Dengue infection using a commercial Dengue Duo rapid test kit for the detection of NS1, IGM, and IGG,” Am. J. Trop. Med. Hyg. 83(3), 690–695 (2010).10.4269/ajtmh.2010.10-0117 PubMed DOI PMC
“Bio-Plex Pro™ Human Cytokine Screening Panel, Instruction Manual,” https://www.bio-rad.com/webroot/web/pdf/lsr/literature/10000092045.pdf.
MilliporeSigma , “Tips and Tricks: The Power of Multiplex Biomarker Analysis from the makers of MILLIPLEX® map,” https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-Aldrich/Brochure/1/br1088en_ms.pdf.
“Immunological Application by Bangs Laboratories Inc.,” https://www.bangslabs.com/sites/default/files/imce/docs/TechNote%20301%20Web.pdf.
Libraty D. H., Young P. R., Pickering D., Endy T. P., Kalayanarooj S., Green S., Vaughn D. W., Nisalak A., Ennis F. A., Rothman A. L., “High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever,” J. Infect. Dis. 186(8), 1165–1168 (2002).10.1086/343813 PubMed DOI
“Dengue Virus IgG DxSelect,” https://www.focusdx.com/pdfs/pi/OUS/EL1500G-OUS.pdf.
Soininen A., Seppala I., Wuorimaa T., Kayhty H., “Assignment of immunoglobulin G1 and G2 concentrations to pneumococcal capsular polysaccharides 3, 6B, 14, 19F, and 23F in pneumococcal reference serum 89-SF,” Clin. Diagn. Lab. Immunol. 5(4), 561–566 (1998).10.1128/CDLI.5.4.561-566.1998 PubMed DOI PMC
“CRP Human ProcartaPlex™ Simplex Kit (certificate of analysis),” https://www.thermofisher.com/order/catalog/product/EPX01A-10288-901#/EPX01A-10288-901.
Han Y., Gu Y., Zhang A. C., Lo Y. H., “Review: imaging technologies for flow cytometry,” Lab. Chip. 16(24), 4639–4647 (2016).10.1039/C6LC01063F PubMed DOI PMC