Higher-Order Hamiltonian for Circuits with (α,β) Elements
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-21608S
Grantová Agentura České Republiky
PubMed
33286186
PubMed Central
PMC7516879
DOI
10.3390/e22040412
PII: e22040412
Knihovny.cz E-zdroje
- Klíčová slova
- Chua’s table, Euler-Lagrange equation, Hamiltonian, Lagrangian, constitutive relation, higher-order element, memristor,
- Publikační typ
- časopisecké články MeSH
The paper studies the construction of the Hamiltonian for circuits built from the (α,β) elements of Chua's periodic table. It starts from the Lagrange function, whose existence is limited to Σ-circuits, i.e., circuits built exclusively from elements located on a common Σ-diagonal of the table. We show that the Hamiltonian can also be constructed via the generalized Tellegen's theorem. According to the ideas of predictive modeling, the resulting Hamiltonian is made up exclusively of the constitutive relations of the elements in the circuit. Within the frame of Ostrogradsky's formalism, the simulation scheme of Σ-circuits is designed and examined with the example of a nonlinear Pais-Uhlenbeck oscillator.
Department of Electrical Engineering University of Defence 662 10 Brno Czech Republic
Department of Microelectronics Brno University of Technology 616 00 Brno Czech Republic
Department of Radio Electronics Brno University of Technology 616 00 Brno Czech Republic
Zobrazit více v PubMed
Fuchs A. Nonlinear Dynamics in Complex Systems. Springer; Berlin/Heidelberg, Germany: 2013. DOI
Chua L.O. CNN: A Paradigm for Complexity. Volume 31 World Scientific; Singapore: 1998. (World Scientific Series on Nonlinear Science Series A).
Caravelli F., Traversa F.L., Di Ventra M. Complex dynamics of memristive circuits: Analytical results and universal slow relaxation. Phys. Rev. 2017;E95:022140. doi: 10.1103/PhysRevE.95.022140. PubMed DOI
Di Ventra M., Traversa F.L. Absence of chaos in digital memcomputing machines with solutions. Phys. Lett. A. 2017;381:3255–3257. doi: 10.1016/j.physleta.2017.08.040. PubMed DOI
Chua L.O. Device modeling via nonlinear circuit elements. IEEE Trans. Circuits Syst. 1980;27:1014–1044. doi: 10.1109/TCS.1980.1084742. DOI
Chua L.O. Memristor—The missing circuit element. IEEE Trans. Circuit Theory. 1971;18:507–519. doi: 10.1109/TCT.1971.1083337. DOI
Strukov D.B., Snider G.S., Stewart D.R., Williams R.S. The missing memristor found. Nature. 2008;453:80–83. doi: 10.1038/nature06932. PubMed DOI
Biolek D., Biolek Z., Biolková V. Every nonlinear element from Chua’s table can generate pinched hysteresis loops: Generalised homothety theorem. Electron. Lett. 2016;52:1744–1746. doi: 10.1049/el.2016.2961. DOI
Jeltsema D. Memory Elements: A Paradigm Shift in Lagrangian Modeling of Electrical Circuits. IFAC Proc. Vol. 2012;45:445–450. doi: 10.3182/20120215-3-AT-3016.00078. DOI
Cohen G.Z., Pershin Y.V., Di Ventra M. Lagrange Formalism of Memory Circuit Elements: Classical and Quantum Formulations. Phys. Rev. B. 2012;85:165428–165430. doi: 10.1103/PhysRevB.85.165428. DOI
Biolek Z., Biolek D., Biolková V. Utilization of Euler-Lagrange Equations in Circuits with Memory Elements. Radioengineering. 2016;25:783–789. doi: 10.13164/re.2016.0783. DOI
Biolek Z., Biolek D., Biolková V. Euler-Lagrange Equations of Networks with Higher-Order Elements. Radioengineering. 2017;26:397–405. doi: 10.13164/re.2017.0397. DOI
Millar W. Some general theorems for nonlinear systems possessing resistance. Philos. Mag. 1951;42:1150–1160. doi: 10.1080/14786445108561361. DOI
Cherry E.C. Some general theorems for nonlinear systems possessing reactance. Philos. Mag. 1951;42:1161–1177. doi: 10.1080/14786445108561362. DOI
Pais A., Uhlenbeck G.E. On Field Theories with Non-Localized Action. Phys. Rev. 1950;79:145–165. doi: 10.1103/PhysRev.79.145. DOI
Biolek D., Biolek Z., Biolková V. Lagrangian for Circuits with Higher-Order Elements. Entropy. 2019;21:1059. doi: 10.3390/e21111059. DOI
Ostrogradsky M. Mémoire sur les defférentielles relatives aux problemes des isopérimetres. Mem. Acad. Sci. St. Petersb. 1850;6:385–517.
Lanczos C. The Variational Principles of Mechanics. 4th ed. Dover Publications; Mineola, NY, USA: 1986. Dover Books on Physics (Book 4)
Knetter C.G. Effective Lagrangians with higher derivatives and equations of motion. Phys. Rev. D. 1994;49:6709. doi: 10.1103/PhysRevD.49.6709. PubMed DOI
Deng Y., Li Y. A memristive conservative chaotic circuit consisting of a memristor and capacitor. Chaos. 2020;30:013120. doi: 10.1063/1.5128384. PubMed DOI
Itoh M., Chua L.O. Memristor Hamiltonian Circuits. Int. J. Bif. Chaos. 2011;21:2395–24255. doi: 10.1142/S021812741103012X. DOI
Itoh M., Chua L.O. Dynamics of Hamiltonian Systems and Memristor Circuits. Int. J. Bif. Chaos. 2017;27:1730005. doi: 10.1142/S0218127417300051. DOI
Penfield P., Spence R., Duinker S. A generalized form of Tellegen’s theorem. IEEE Trans. Circuit Theory. 1970;17:302–305. doi: 10.1109/TCT.1970.1083145. DOI
Biolek Z., Biolek D., Biolková V., Kolka Z. Taxicab Geometry in Table of Higher-Order Elements. Nonlinear Dyn. 2019;98:623–636. doi: 10.1007/s11071-019-05218-9. DOI
Woodard R.P. The Theorem of Ostrogradsky. arXiv. 20151506.02210
Soliman A.M. Realizations of ideal FDNC and FDNR elements using new types of mutators. Int. J. Electron. 1978;44:317–323. doi: 10.1080/00207217808900822. DOI
Barbu A., Zhu S.-C. Monte Carlo Methods. 4th ed. Springer; Singapore: 2020. p. 422. DOI
Joglekar Y.N., Wolf S.J. The elusive memristor: Properties of basic electrical circuits. Eur. J. Phys. 2009;30:661–675. doi: 10.1088/0143-0807/30/4/001. DOI
Biolek Z., Biolek D. Memristor and Memristive Systems. Springer; New York, NY, USA: 2014. Fourth Fundamental Circuit Element: SPICE Modeling and Simulation; pp. 105–162. DOI
Lewin L. Dilogarithms and Associated Functions. 1st ed. MacDonald; London, UK: 1958. p. 353.
Biolek D., Biolek Z., Biolková V. Duality of Complex Systems Built from Higher-Order Elements. Complexity. 2018;2018:15. doi: 10.1155/2018/5719397. DOI
Ascoli A., Corinto F., Senger V., Tetzlaff R. Memristor Model Comparison. IEEE Circuits Syst. Mag. 2013;13:89–105. doi: 10.1109/MCAS.2013.2256272. DOI