Ethylene Induction of Non-Enzymatic Metabolic Antioxidants in Matricaria chamomilla
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2105/2019
Specific Research Project of Faculty of Science, University of Hradec Kralove
PubMed
33287420
PubMed Central
PMC7729440
DOI
10.3390/molecules25235720
PII: molecules25235720
Knihovny.cz E-resources
- Keywords
- antioxidants, chamomile, chlorogenic acids, ethylene,
- MeSH
- Antioxidants metabolism MeSH
- Biosynthetic Pathways physiology MeSH
- Ethylenes metabolism MeSH
- Phenols metabolism MeSH
- Phenylalanine Ammonia-Lyase metabolism MeSH
- Stress, Physiological physiology MeSH
- Chamomile metabolism MeSH
- Quinic Acid analogs & derivatives metabolism MeSH
- Chlorogenic Acid metabolism MeSH
- Caffeic Acids metabolism MeSH
- Plant Leaves metabolism MeSH
- Matricaria metabolism MeSH
- Polyphenols metabolism MeSH
- Plant Extracts metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants MeSH
- caffeic acid MeSH Browser
- caffeoylquinic acid MeSH Browser
- Ethylenes MeSH
- Phenols MeSH
- Phenylalanine Ammonia-Lyase MeSH
- Quinic Acid MeSH
- Chlorogenic Acid MeSH
- Caffeic Acids MeSH
- Polyphenols MeSH
- Plant Extracts MeSH
Phytochemical investigations of Matricaria chamomilla L. (Asteraceae) stated the presence of several compounds with an established therapeutic and antioxidant potential. The chamomile non-enzymatic antioxidant system includes low molecular mass compounds, mainly polyphenols such as cinnamic, hydroxybenzoic and chlorogenic acids, flavonoids and coumarins. The objective of this work was to evaluate the role of the non-enzymatic antioxidant system after stimulation by ethylene in tetraploid chamomile plants. Seven days of ethylene treatment significantly increased the activity of phenylalanine ammonia-lyase, which influenced the biosynthesis of protective polyphenols in the first step of their biosynthetic pathway. Subsequently, considerable enhanced levels of phenolic metabolites with a substantial antioxidant effect (syringic, vanillic and caffeic acid, 1,5-dicaffeoylquinic acid, quercetin, luteolin, daphnin, and herniarin) were determined by HPLC-DAD-MS. The minimal information on the chlorogenic acids function in chamomile led to the isolation and identification of 5-O-feruloylquinic acid. It is accumulated during normal conditions, but after the excessive effect of abiotic stress, its level significantly decreases and levels of other caffeoylquinic acids enhance. Our results suggest that ethephon may act as a stimulant of the production of pharmaceutically important non-enzymatic antioxidants in chamomile leaves and thus, lead to an overall change in phytochemical content and therapeutic effects of chamomile plants, as well.
See more in PubMed
Xu D.P., Li Y., Meng X., Zhou T., Zhou Y., Zheng J., Zhang J.J., Li H.B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017;18:96. doi: 10.3390/ijms18010096. PubMed DOI PMC
Waskiewicz A., Besztedra M., Goliński P. Nonenzymatic Antioxidants in Plants. In: Parvaiz A., editor. Oxidative Damage to Plants. Acdemic Press; San Diego, CA, USA: 2014. pp. 201–234. DOI
Formisano C., Delfine S., Oliviero F., Tenore G.C., Rigano D., Senatore F. Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy) Ind. Crop. Prod. 2015;63:256–263. doi: 10.1016/j.indcrop.2014.09.042. DOI
Song-Lin H., Li X.-X., Mian Q.-H., Lan W., Liu Y. Comparison of antioxidant activity between two species of chamomiles produced in Xinjiang by TLC-bioautography. Zhongguo Zhong Yao Za Zhi. 2013;38 doi: 10.4268/cjcmm20130210. PubMed DOI
Buono-Core G.E., Nuñez M.V., Lucero A., Vargas R., Jullian C. Structural elucidation of bioactive principles in floral extracts of German chamomille (Matricaria recutita L.) J. Chil. Chem. Soc. 2011;56:549–553. doi: 10.4067/S0717-97072011000100006. DOI
Eliašová A., Repčák M., Pastírová A. Quantitative changes of secondary metabolites of Matricaria chamomilla by abiotic stress. Z. Naturforsch. 2004;59:543–548. doi: 10.1515/znc-2004-7-817. PubMed DOI
Guimarães R., Barros L., Dueñas M., Calhelha R.C., Carvalho A.M., Santos-Buelga C., Queiroz M.J.R.P., Ferreira I.C.F.R. Infusion and decoction of wild German chamomile: Bioactivity and characterization of organic acids and phenolic compounds. Food Chem. 2013;136:947–954. doi: 10.1016/j.foodchem.2012.09.007. PubMed DOI
Petrulova-Poracka V., Repcak M., Vilkova M., Imrich J. Coumarins of Matricaria chamomilla L.: Aglycones and glycosides. Food Chem. 2013;141:54–59. doi: 10.1016/j.foodchem.2013.03.004. PubMed DOI
Molnar M., Mendešević N., Šubarić D., Banjari I., Jokić S. Comparison of various techniques for the extraction of umbelliferone and herniarin in Matricaria chamomilla processing fractions. Chem. Cent. J. 2017;11:78. doi: 10.1186/s13065-017-0308-y. PubMed DOI PMC
Cvetanović A., Švarc-Gajić J., Mašković P., Savić S., Nikolić L. Antioxidant and biological activity of chamomile extracts obtained by different techniques: Perspective of using superheated water for isolation of biologically active compounds. Ind. Crops. Prod. 2015;65:582–591. doi: 10.1016/j.indcrop.2014.09.044. DOI
Petruľová V., Dučaiová Z., Repčák M. Short-term UV-B dose stimulates production of protective metabolites in Matricaria chamomilla leaves. Photochem. Photobiol. 2014;90:1061–1068. doi: 10.1111/php.12300. PubMed DOI
Kovacik J., Klejdus B. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition. Food Chem. 2004;142:334–341. doi: 10.1016/j.foodchem.2013.07.074. PubMed DOI
Sato Y., Itagaki S., Kurokawa T., Ogura J., Kobayashi M., Hirano T., Sugawara M., Iseki K. In vitro and in vivo antioxidant properties of chlorogenicacid and caffeicacid. Int. J. Pharm. 2011;403:136–138. doi: 10.1016/j.ijpharm.2010.09.035. PubMed DOI
Iqbal N., Trivellini A., Masood A., Ferrante A., Khan N.A. Current understanding on ethylene signaling in plants: The influence of nutrient availability. Plant Physiol. Biochem. 2013;73:128–138. doi: 10.1016/j.plaphy.2013.09.011. PubMed DOI
Müller M., Munné-Bosch S. Ethylene response factors: A key regulatory hub in hormone and stress signaling. Plant Physiol. 2015;169:32–41. doi: 10.1104/pp.15.00677. PubMed DOI PMC
Abiri R., Shaharuddin N.A., Maziah M., Yusof Z.N.B., Atabaki N., Sahebi M., Valdiani A., Kalhori N., Azizi P., Hanafi M.M. Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environ. Exp. Bot. 2017;134:33–44. doi: 10.1016/j.envexpbot.2016.10.015. DOI
Jakubowicz M., Nowak W. 1-aminocyclopropane-1-carboxylate synthase, an enzyme of ethylene biosynthesis. In: Liu H.W., Mander L., editors. Comprehensive Natural Products II: Chemistry and Biology. Elsevier; San Diego, CA, USA: 2010. pp. 91–120.
Watanabe T., Sakai S. Effects of active oxygen species and methyl jasmonate on expression of the gene for a wound-inducible 1-aminocyclopropane-1-carboxylatesynthase in winter squash (Cucurbita maxima) Planta. 1998;206:570–576. doi: 10.1007/s004250050434. DOI
Sajko M., Kovalíková-Dučaiová Z., Paľove-Balang P., Repčák M. Physiological responses of Matricaria chamomilla to potassium nitrate supply and foliar application of ethephon. J. Plant Growth Regul. 2017;37:360–369. doi: 10.1007/s00344-017-9735-1. DOI
Dixon R.A., Paiva N.L. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995;7:1085–1087. doi: 10.2307/3870059. PubMed DOI PMC
Heredia J.B., Cisneros-Zevallos L. The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chem. 2009;115:1500–1508. doi: 10.1016/j.foodchem.2009.01.078. DOI
Guzman J.D. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity. Molecules. 2014;19:19292–19349. doi: 10.3390/molecules191219292. PubMed DOI PMC
Srinivasulu C., Ramgopal M., Ramanjaneyulu G., Anuradha C.M., Suresh Kumar C. Syringic acid (SA) ‒ A review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed. Pharmacother. 2018;108:547–557. doi: 10.1016/j.biopha.2018.09.069. PubMed DOI
Rice-Evans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolicacids. Free Radic. Biol. Med. 1996;20:933956. doi: 10.1016/0891-5849(95)02227-9. PubMed DOI
Kurepa J., Shull T.E., Smalle J.A. Quercetin feeding protects plants against oxidative stress. F1000Research. 2016;5:2430–2439. doi: 10.12688/f1000research.9659.1. DOI
Di Ferdinando M., Brunetti C., Fini A., Tattini M. Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P., Prasad M.N.V., editors. Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability. Springer; New York, NY, USA: 2012. pp. 159–179.
Repčák M., Suvák M. Methyl jasmonate and Echinothrips americanus regulate coumarin accumulation in leaves of Matricaria chamomilla. Biochem. Syst. Ecol. 2013;47:38–41. doi: 10.1016/j.bse.2012.10.009. DOI
Bourgaud F., Hehn A., Larbat R., Doerper S., Gontier E., Kellner S., Matern U. Biosynthesis of coumarins in plants: A major pathway still to be unraveled for cytochrome P450 enzymes. Phytochem. Review. 2006;5:293–308. doi: 10.1007/s11101-006-9040-2. DOI
Chu L.L., Pandey R.P., Lim H.N., Jung H.J., Thuan N.H., Kim T.-S., Sohng J.K. Synthesis of umbelliferone derivatives in Escherichia coli and their biological activities. J. Biol. Eng. 2017;11:15. doi: 10.1186/s13036-017-0056-5. PubMed DOI PMC
Witaicenis A., Seito L.N., da Silveira Chagas A., de Almeida Jr L.D., Luchini A.C., Rodrigues-Orsi P., Cestari S.H., Di Stasi L.C. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine. 2014;21:240–246. doi: 10.1016/j.phymed.2013.09.001. PubMed DOI
Avena-Bustillos R., Du W.-X., Woods R., Olson D., Breksa A.P., McHugh T.H. Ultraviolet-B light treatment increases antioxidant capacity of carrot products. J. Sci. Food Agric. 2012;92:2341–2348. doi: 10.1002/jsfa.5635. PubMed DOI
Kono Y., Kashine S., Yoneyama T., Sakamoto Y., Matsui Y., Shibata H. Iron chelation by chlorogenic acid as a natural antioxidant. Biosci. Biotechnol. Biochem. 1998;62:22–27. doi: 10.1271/bbb.62.22. PubMed DOI
Chan E.W.C., Lim Y.Y., Ling S.K., Tan S.P., Lim K.K., Khoo M.G.H. Caffeoylquinic acids from leaves of Etlingera species (Zingiberaceae) Food Sci. Technol. 2009;42:1026–1030. doi: 10.1016/j.lwt.2009.01.003. DOI
Mathew S., Abraham T.E., Zakaria Z.A. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J. Food Sci. Technol. 2015;52:5790–5798. doi: 10.1007/s13197-014-1704-0. PubMed DOI PMC
Molyneux P. The use of the stable free radical Diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. J. Sci. Technol. 2004;26:211–219.
Yang Y.J., Liu X., Wu H.R., He X.F., Bi Y.R., Zhu Y., Liu Z.L. Radical scavenging activity and cytotoxicity of active quinic acid derivatives from Scorzonera divaricata roots. Food Chem. 2013;138:2057–2063. doi: 10.1016/j.foodchem.2012.10.122. PubMed DOI
Teles Fujishima M.A., Silva N.D.S.R., Ramos R.D.S., Batista Ferreira E.F., Santos K.L.B., Silva C.H.T.P., Silva J.O., Campos Rosa J.M., Santos C.B.R. An Antioxidant Potential, Quantum-Chemical and Molecular Docking Study of the Major Chemical Constituents Present in the Leaves of Curatella americana Linn. Pharmaceuticals. 2018;11:72. doi: 10.3390/ph11030072. PubMed DOI PMC
Urbaniak A., Kujawski J., Czaja K., Szelag M. Antioxidant properties of several caffeic acid derivatives: A theoretical study. C. R. Chim. 2017;20:1072–1082. doi: 10.1016/j.crci.2017.08.003. DOI
Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI
Silva A.B.F., Marinho M.M., Da Silva Mendes F.R. In Silico Study of Phytochemical Chlorogenic Acid: A Semi-Empirical Quantum Study and Adme. Int. J. Curr. Res. Rev. 2019;12:34–39.
Naveed M., Hejazi V., Abbas M., Kamboh A.A., Khan G.J., Shumzaid M., Ahmad F., Babazadeh D., FangFang X., Modarresi-Ghazani F., et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacoth. 2018;97:6–74. doi: 10.1016/j.biopha.2017.10.064. PubMed DOI
Repčák M., Pastírová A., Imrich J., Švehlíková V., Mártonfi P. The variability of (Z)-and (E)-2-β-D-glucopyranosyloxy-4-methoxycinnamic acids and apigenin glucosides in diploid and tetraploid Chamomilla recutita. Plant Breeding. 2001;120:188–190. doi: 10.1046/j.1439-0523.2001.00572.x. DOI
dos Santos W.D., Ferrarese M.L.L., Finger A., Teixeira A.C.N., Ferrarese-Filho O. Lignification and related enzymes in glycine max root growth-inhibition by ferulic acid. J. Chem. Ecol. 2004;30:1203–1212. doi: 10.1023/B:JOEC.0000030272.83794.f0. PubMed DOI
Kovalikova Z., Kubes J., Skalicky M., Kuchtickova N., Maskova L., Tuma J., Vachova P., Hejnak V. Changes in content of polyphenols and ascorbic acid in leaves of white cabbage after pest infestation. Molecules. 2019;24:2622. doi: 10.3390/molecules24142622. PubMed DOI PMC
Giorgi A., Mingozzi M., Madeo M., Speranza G., Cocucci M. Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb.) Food Chem. 2009;114:204–211. doi: 10.1016/j.foodchem.2008.09.039. DOI
Dennington R., Keith T.A., Millam J.M. GAUSSVIEW 6.0. Semichem Inc.; Shawnee Mission, KS, USA: 2016.
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R. GAUSSIAN 16, Revision, C.01. Gaussian Inc.; Wallingford, CT, USA: 2016.
Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC