• This record comes from PubMed

Ethylene Induction of Non-Enzymatic Metabolic Antioxidants in Matricaria chamomilla

. 2020 Dec 03 ; 25 (23) : . [epub] 20201203

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
2105/2019 Specific Research Project of Faculty of Science, University of Hradec Kralove

Links

PubMed 33287420
PubMed Central PMC7729440
DOI 10.3390/molecules25235720
PII: molecules25235720
Knihovny.cz E-resources

Phytochemical investigations of Matricaria chamomilla L. (Asteraceae) stated the presence of several compounds with an established therapeutic and antioxidant potential. The chamomile non-enzymatic antioxidant system includes low molecular mass compounds, mainly polyphenols such as cinnamic, hydroxybenzoic and chlorogenic acids, flavonoids and coumarins. The objective of this work was to evaluate the role of the non-enzymatic antioxidant system after stimulation by ethylene in tetraploid chamomile plants. Seven days of ethylene treatment significantly increased the activity of phenylalanine ammonia-lyase, which influenced the biosynthesis of protective polyphenols in the first step of their biosynthetic pathway. Subsequently, considerable enhanced levels of phenolic metabolites with a substantial antioxidant effect (syringic, vanillic and caffeic acid, 1,5-dicaffeoylquinic acid, quercetin, luteolin, daphnin, and herniarin) were determined by HPLC-DAD-MS. The minimal information on the chlorogenic acids function in chamomile led to the isolation and identification of 5-O-feruloylquinic acid. It is accumulated during normal conditions, but after the excessive effect of abiotic stress, its level significantly decreases and levels of other caffeoylquinic acids enhance. Our results suggest that ethephon may act as a stimulant of the production of pharmaceutically important non-enzymatic antioxidants in chamomile leaves and thus, lead to an overall change in phytochemical content and therapeutic effects of chamomile plants, as well.

See more in PubMed

Xu D.P., Li Y., Meng X., Zhou T., Zhou Y., Zheng J., Zhang J.J., Li H.B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017;18:96. doi: 10.3390/ijms18010096. PubMed DOI PMC

Waskiewicz A., Besztedra M., Goliński P. Nonenzymatic Antioxidants in Plants. In: Parvaiz A., editor. Oxidative Damage to Plants. Acdemic Press; San Diego, CA, USA: 2014. pp. 201–234. DOI

Formisano C., Delfine S., Oliviero F., Tenore G.C., Rigano D., Senatore F. Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy) Ind. Crop. Prod. 2015;63:256–263. doi: 10.1016/j.indcrop.2014.09.042. DOI

Song-Lin H., Li X.-X., Mian Q.-H., Lan W., Liu Y. Comparison of antioxidant activity between two species of chamomiles produced in Xinjiang by TLC-bioautography. Zhongguo Zhong Yao Za Zhi. 2013;38 doi: 10.4268/cjcmm20130210. PubMed DOI

Buono-Core G.E., Nuñez M.V., Lucero A., Vargas R., Jullian C. Structural elucidation of bioactive principles in floral extracts of German chamomille (Matricaria recutita L.) J. Chil. Chem. Soc. 2011;56:549–553. doi: 10.4067/S0717-97072011000100006. DOI

Eliašová A., Repčák M., Pastírová A. Quantitative changes of secondary metabolites of Matricaria chamomilla by abiotic stress. Z. Naturforsch. 2004;59:543–548. doi: 10.1515/znc-2004-7-817. PubMed DOI

Guimarães R., Barros L., Dueñas M., Calhelha R.C., Carvalho A.M., Santos-Buelga C., Queiroz M.J.R.P., Ferreira I.C.F.R. Infusion and decoction of wild German chamomile: Bioactivity and characterization of organic acids and phenolic compounds. Food Chem. 2013;136:947–954. doi: 10.1016/j.foodchem.2012.09.007. PubMed DOI

Petrulova-Poracka V., Repcak M., Vilkova M., Imrich J. Coumarins of Matricaria chamomilla L.: Aglycones and glycosides. Food Chem. 2013;141:54–59. doi: 10.1016/j.foodchem.2013.03.004. PubMed DOI

Molnar M., Mendešević N., Šubarić D., Banjari I., Jokić S. Comparison of various techniques for the extraction of umbelliferone and herniarin in Matricaria chamomilla processing fractions. Chem. Cent. J. 2017;11:78. doi: 10.1186/s13065-017-0308-y. PubMed DOI PMC

Cvetanović A., Švarc-Gajić J., Mašković P., Savić S., Nikolić L. Antioxidant and biological activity of chamomile extracts obtained by different techniques: Perspective of using superheated water for isolation of biologically active compounds. Ind. Crops. Prod. 2015;65:582–591. doi: 10.1016/j.indcrop.2014.09.044. DOI

Petruľová V., Dučaiová Z., Repčák M. Short-term UV-B dose stimulates production of protective metabolites in Matricaria chamomilla leaves. Photochem. Photobiol. 2014;90:1061–1068. doi: 10.1111/php.12300. PubMed DOI

Kovacik J., Klejdus B. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition. Food Chem. 2004;142:334–341. doi: 10.1016/j.foodchem.2013.07.074. PubMed DOI

Sato Y., Itagaki S., Kurokawa T., Ogura J., Kobayashi M., Hirano T., Sugawara M., Iseki K. In vitro and in vivo antioxidant properties of chlorogenicacid and caffeicacid. Int. J. Pharm. 2011;403:136–138. doi: 10.1016/j.ijpharm.2010.09.035. PubMed DOI

Iqbal N., Trivellini A., Masood A., Ferrante A., Khan N.A. Current understanding on ethylene signaling in plants: The influence of nutrient availability. Plant Physiol. Biochem. 2013;73:128–138. doi: 10.1016/j.plaphy.2013.09.011. PubMed DOI

Müller M., Munné-Bosch S. Ethylene response factors: A key regulatory hub in hormone and stress signaling. Plant Physiol. 2015;169:32–41. doi: 10.1104/pp.15.00677. PubMed DOI PMC

Abiri R., Shaharuddin N.A., Maziah M., Yusof Z.N.B., Atabaki N., Sahebi M., Valdiani A., Kalhori N., Azizi P., Hanafi M.M. Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environ. Exp. Bot. 2017;134:33–44. doi: 10.1016/j.envexpbot.2016.10.015. DOI

Jakubowicz M., Nowak W. 1-aminocyclopropane-1-carboxylate synthase, an enzyme of ethylene biosynthesis. In: Liu H.W., Mander L., editors. Comprehensive Natural Products II: Chemistry and Biology. Elsevier; San Diego, CA, USA: 2010. pp. 91–120.

Watanabe T., Sakai S. Effects of active oxygen species and methyl jasmonate on expression of the gene for a wound-inducible 1-aminocyclopropane-1-carboxylatesynthase in winter squash (Cucurbita maxima) Planta. 1998;206:570–576. doi: 10.1007/s004250050434. DOI

Sajko M., Kovalíková-Dučaiová Z., Paľove-Balang P., Repčák M. Physiological responses of Matricaria chamomilla to potassium nitrate supply and foliar application of ethephon. J. Plant Growth Regul. 2017;37:360–369. doi: 10.1007/s00344-017-9735-1. DOI

Dixon R.A., Paiva N.L. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995;7:1085–1087. doi: 10.2307/3870059. PubMed DOI PMC

Heredia J.B., Cisneros-Zevallos L. The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chem. 2009;115:1500–1508. doi: 10.1016/j.foodchem.2009.01.078. DOI

Guzman J.D. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity. Molecules. 2014;19:19292–19349. doi: 10.3390/molecules191219292. PubMed DOI PMC

Srinivasulu C., Ramgopal M., Ramanjaneyulu G., Anuradha C.M., Suresh Kumar C. Syringic acid (SA) ‒ A review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed. Pharmacother. 2018;108:547–557. doi: 10.1016/j.biopha.2018.09.069. PubMed DOI

Rice-Evans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolicacids. Free Radic. Biol. Med. 1996;20:933956. doi: 10.1016/0891-5849(95)02227-9. PubMed DOI

Kurepa J., Shull T.E., Smalle J.A. Quercetin feeding protects plants against oxidative stress. F1000Research. 2016;5:2430–2439. doi: 10.12688/f1000research.9659.1. DOI

Di Ferdinando M., Brunetti C., Fini A., Tattini M. Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P., Prasad M.N.V., editors. Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability. Springer; New York, NY, USA: 2012. pp. 159–179.

Repčák M., Suvák M. Methyl jasmonate and Echinothrips americanus regulate coumarin accumulation in leaves of Matricaria chamomilla. Biochem. Syst. Ecol. 2013;47:38–41. doi: 10.1016/j.bse.2012.10.009. DOI

Bourgaud F., Hehn A., Larbat R., Doerper S., Gontier E., Kellner S., Matern U. Biosynthesis of coumarins in plants: A major pathway still to be unraveled for cytochrome P450 enzymes. Phytochem. Review. 2006;5:293–308. doi: 10.1007/s11101-006-9040-2. DOI

Chu L.L., Pandey R.P., Lim H.N., Jung H.J., Thuan N.H., Kim T.-S., Sohng J.K. Synthesis of umbelliferone derivatives in Escherichia coli and their biological activities. J. Biol. Eng. 2017;11:15. doi: 10.1186/s13036-017-0056-5. PubMed DOI PMC

Witaicenis A., Seito L.N., da Silveira Chagas A., de Almeida Jr L.D., Luchini A.C., Rodrigues-Orsi P., Cestari S.H., Di Stasi L.C. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine. 2014;21:240–246. doi: 10.1016/j.phymed.2013.09.001. PubMed DOI

Avena-Bustillos R., Du W.-X., Woods R., Olson D., Breksa A.P., McHugh T.H. Ultraviolet-B light treatment increases antioxidant capacity of carrot products. J. Sci. Food Agric. 2012;92:2341–2348. doi: 10.1002/jsfa.5635. PubMed DOI

Kono Y., Kashine S., Yoneyama T., Sakamoto Y., Matsui Y., Shibata H. Iron chelation by chlorogenic acid as a natural antioxidant. Biosci. Biotechnol. Biochem. 1998;62:22–27. doi: 10.1271/bbb.62.22. PubMed DOI

Chan E.W.C., Lim Y.Y., Ling S.K., Tan S.P., Lim K.K., Khoo M.G.H. Caffeoylquinic acids from leaves of Etlingera species (Zingiberaceae) Food Sci. Technol. 2009;42:1026–1030. doi: 10.1016/j.lwt.2009.01.003. DOI

Mathew S., Abraham T.E., Zakaria Z.A. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J. Food Sci. Technol. 2015;52:5790–5798. doi: 10.1007/s13197-014-1704-0. PubMed DOI PMC

Molyneux P. The use of the stable free radical Diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. J. Sci. Technol. 2004;26:211–219.

Yang Y.J., Liu X., Wu H.R., He X.F., Bi Y.R., Zhu Y., Liu Z.L. Radical scavenging activity and cytotoxicity of active quinic acid derivatives from Scorzonera divaricata roots. Food Chem. 2013;138:2057–2063. doi: 10.1016/j.foodchem.2012.10.122. PubMed DOI

Teles Fujishima M.A., Silva N.D.S.R., Ramos R.D.S., Batista Ferreira E.F., Santos K.L.B., Silva C.H.T.P., Silva J.O., Campos Rosa J.M., Santos C.B.R. An Antioxidant Potential, Quantum-Chemical and Molecular Docking Study of the Major Chemical Constituents Present in the Leaves of Curatella americana Linn. Pharmaceuticals. 2018;11:72. doi: 10.3390/ph11030072. PubMed DOI PMC

Urbaniak A., Kujawski J., Czaja K., Szelag M. Antioxidant properties of several caffeic acid derivatives: A theoretical study. C. R. Chim. 2017;20:1072–1082. doi: 10.1016/j.crci.2017.08.003. DOI

Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI

Silva A.B.F., Marinho M.M., Da Silva Mendes F.R. In Silico Study of Phytochemical Chlorogenic Acid: A Semi-Empirical Quantum Study and Adme. Int. J. Curr. Res. Rev. 2019;12:34–39.

Naveed M., Hejazi V., Abbas M., Kamboh A.A., Khan G.J., Shumzaid M., Ahmad F., Babazadeh D., FangFang X., Modarresi-Ghazani F., et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacoth. 2018;97:6–74. doi: 10.1016/j.biopha.2017.10.064. PubMed DOI

Repčák M., Pastírová A., Imrich J., Švehlíková V., Mártonfi P. The variability of (Z)-and (E)-2-β-D-glucopyranosyloxy-4-methoxycinnamic acids and apigenin glucosides in diploid and tetraploid Chamomilla recutita. Plant Breeding. 2001;120:188–190. doi: 10.1046/j.1439-0523.2001.00572.x. DOI

dos Santos W.D., Ferrarese M.L.L., Finger A., Teixeira A.C.N., Ferrarese-Filho O. Lignification and related enzymes in glycine max root growth-inhibition by ferulic acid. J. Chem. Ecol. 2004;30:1203–1212. doi: 10.1023/B:JOEC.0000030272.83794.f0. PubMed DOI

Kovalikova Z., Kubes J., Skalicky M., Kuchtickova N., Maskova L., Tuma J., Vachova P., Hejnak V. Changes in content of polyphenols and ascorbic acid in leaves of white cabbage after pest infestation. Molecules. 2019;24:2622. doi: 10.3390/molecules24142622. PubMed DOI PMC

Giorgi A., Mingozzi M., Madeo M., Speranza G., Cocucci M. Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb.) Food Chem. 2009;114:204–211. doi: 10.1016/j.foodchem.2008.09.039. DOI

Dennington R., Keith T.A., Millam J.M. GAUSSVIEW 6.0. Semichem Inc.; Shawnee Mission, KS, USA: 2016.

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R. GAUSSIAN 16, Revision, C.01. Gaussian Inc.; Wallingford, CT, USA: 2016.

Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...