Changes in Content of Polyphenols and Ascorbic Acid in Leaves of White Cabbage after Pest Infestation

. 2019 Jul 18 ; 24 (14) : . [epub] 20190718

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31323864

Grantová podpora
S grant of MSMT CR the Ministry of Education, Youth and Sports of the Czech Republic
No. 2111, 2018 Specific Research Project of Faculty of Science, University of Hradec Kralove

Crops, such as white cabbage (Brassica oleracea L. var. capitata (L.) f. alba), are often infested by herbivorous insects that consume the leaves directly or lay eggs with subsequent injury by caterpillars. The plants can produce various defensive metabolites or free radicals that repel the insects to avert further damage. To study the production and effects of these compounds, large white cabbage butterflies, Pieris brassicae and flea beetles, Phyllotreta nemorum, were captured in a cabbage field and applied to plants cultivated in the lab. After insect infestation, leaves were collected and UV/Vis spectrophotometry and HPLC used to determine the content of stress molecules (superoxide), primary metabolites (amino acids), and secondary metabolites (phenolic acids and flavonoids). The highest level of superoxide was measured in plants exposed to fifty flea beetles. These plants also manifested a higher content of phenylalanine, a substrate for the synthesis of phenolic compounds, and in activation of total phenolics and flavonoid production. The levels of specific phenolic acids and flavonoids had higher variability when the dominant increase was in the flavonoid, quercetin. The leaves after flea beetle attack also showed an increase in ascorbic acid which is an important nutrient of cabbage.

Zobrazit více v PubMed

Ahuja I., Rohloff J., Bones A.M. Defence Mechanisms of Brassicaceae: Implications for Plant-Insect Interactions and Potential for Integrated Pest Management. In: Lichtfouse E., Hamelin M., Navarrete M., Debaeke P., editors. Sustainable Agriculture Volume 2. Springer; Dordrecht, The Netherlands: 2011. pp. 623–670.

Cartea M.E., Francisco M., Soengas P., Velasco P. Phenolic Compounds in Brassica Vegetables. Molecules. 2010;16:251–280. doi: 10.3390/molecules16010251. PubMed DOI PMC

Metspalu L., Kruus E., Ploomi A., Williams I.H., Hiiesaar K., Jõgar K., Veromann E., Mänd M. Flea beetle (Chrysomelidae: Alticinae) species composition and abundance in different cruciferous oilseed crops and the potential for a trap crop system. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2014;64:572–582. doi: 10.1080/09064710.2014.933871. DOI

War A.R., Paulraj M.G., Ahmad T., Buhroo A.A., Hussain B., Ignacimuthu S., Sharma H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 2012;7:1306–1320. doi: 10.4161/psb.21663. PubMed DOI PMC

Kumar S. Plant secondary metabolites (PSMs) of Brassicaceae and their role in plant defense against insect herbivores—A review. J. Appl. Nat. Sci. 2017;9:508–519. doi: 10.31018/jans.v9i1.1222. DOI

Harborne J.B., Grayer R.J. The Flavonoids Advances in Research Since 1986. Routledge; Abingdon, UK: 2017.

Fürstenberg-Hägg J., Zagrobelny M., Bak S. Plant Defense against Insect Herbivores. Int. J. Mol. Sci. 2013;14:10242–10297. doi: 10.3390/ijms140510242. PubMed DOI PMC

Geiselhardt S., Yoneya K., Blenn B., Drechsler N., Gershenzon J., Kunze R., Hilker M. Egg Laying of Cabbage White Butterfly (Pieris brassicae) on Arabidopsis thaliana Affects Subsequent Performance of the Larvae. PLoS ONE. 2013;8:e59661. doi: 10.1371/journal.pone.0059661. PubMed DOI PMC

Kos M., Houshyani B., Wietsma R., Kabouw P., Vet L.E.M., van Loon J.J.A., Dicke M. Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid. Phytochemistry. 2012;77:162–170. doi: 10.1016/j.phytochem.2012.01.005. PubMed DOI

Ferreres F., Fernandes F., Pereira D.M., Pereira J.A., Valentão P., Andrade P.B. Phenolics Metabolism in Insects: Pieris brassicae—Brassica oleracea var. costata Ecological Duo. J. Agric. Food Chem. 2009;57:9035–9043. doi: 10.1021/jf901538j. PubMed DOI

Ferreres F., Valentão P., Pereira J.A., Bento A., Noites A., Seabra R.M., Andrade P.B. HPLC-DAD-MS/MS-ESI Screening of Phenolic Compounds in Pieris brassicae L. Reared on Brassica rapa var. rapa L. J. Agric. Food Chem. 2008;56:844–853. doi: 10.1021/jf072657a. PubMed DOI

Moloi M.J., van der Westhuizen A.J. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J. Plant Physiol. 2006;163:1118–1125. doi: 10.1016/j.jplph.2005.07.014. PubMed DOI

Little D., Gouhier-Darimont C., Bruessow F., Reymond P. Oviposition by Pierid Butterflies Triggers Defense Responses in Arabidopsis. Plant Physiol. 2006;143:784–800. doi: 10.1104/pp.106.090837. PubMed DOI PMC

Kunierczyk A., Winge P., Jrstad T.S., Troczyska J., Rossiter J.T., Bones A.M., Kuśnierczyk A., Jørstad T.S., Troczyńska J. Towards global understanding of plant defence against aphids timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ. 2008;31:1097–1115. doi: 10.1111/j.1365-3040.2008.01823.x. PubMed DOI

Kempema L.A., Cui X., Holzer F.M., Walling L.L. Arabidopsis Transcriptome Changes in Response to Phloem-Feeding Silverleaf Whitefly Nymphs. Similarities and Distinctions in Responses to Aphids. Plant Physiol. 2006;143:849–865. doi: 10.1104/pp.106.090662. PubMed DOI PMC

Ibrahim S., Mir G.M., Rouf A., War A.R., Hussain B. Herbivore and phytohormone induced defensive response in kale against cabbage butterfly, Pieris brassicae Linn. J. Asia-Pac. Entomol. 2018;21:367–373. doi: 10.1016/j.aspen.2018.01.018. DOI

Chen Y., Ni X., Buntin G.D. Physiological, Nutritional, and Biochemical Bases of Corn Resistance to Foliage-Feeding Fall Armyworm. J. Chem. Ecol. 2009;35:297–306. doi: 10.1007/s10886-009-9600-1. PubMed DOI

He J., Chen F., Chen S., Lv G., Deng Y., Fang W., Liu Z., Guan Z., He C. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J. Plant Physiol. 2011;168:687–693. doi: 10.1016/j.jplph.2010.10.009. PubMed DOI

Dixon R.A., Paiva N.L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995;7:1085–1097. doi: 10.2307/3870059. PubMed DOI PMC

Tsai C.J., Harding S.A., Tschaplinski T.J., Lindroth R.L., Yuan Y. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol. 2006;172:47–62. doi: 10.1111/j.1469-8137.2006.01798.x. PubMed DOI

Morreel K., Goeminne G., Storme V., Sterck L., Ralph J., Coppieters W., Breyne P., Steenackers M., Georges M., Messens E., et al. Genetical metabolomics of flavonoid biosynthesis in Populus: A case study. Plant J. 2006;47:224–237. doi: 10.1111/j.1365-313X.2006.02786.x. PubMed DOI

Leon J., Shulaev V., Yalpani N., Lawton M.A., Raskin I. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proc. Natl. Acad. Sci. USA. 1995;92:10413–10417. doi: 10.1073/pnas.92.22.10413. PubMed DOI PMC

Khattab H. The Defense Mechanism of Cabbage Plant Against Phloem-Sucking Aphid (Brevicoryne brassicae L.) Aust. J. Basic Appl. Sci. 2007;1:56–62.

Bhonwong A., Stout M.J., Attajarusit J., Tantasawat P. Defensive role of tomato polyphenol oxidases against cotton bollworm helicoverpa armigera and beet armyworm spodoptera exigua. J. Chem. Ecol. 2009 doi: 10.1007/s10886-008-9571-7. PubMed DOI

Kumar S., Singh Y.P., Singh S.P., Singh R. Physical and biochemical aspects of host plant resistance to mustard aphid, Lipaphis erysimi (Kaltenbach) in rapeseed-mustard. Arthropod-Plant Interact. 2017;11:551–559. doi: 10.1007/s11829-016-9492-2. DOI

Palial S., Kumar S., Sharma S. Biochemical changes in the Brassica juncea-fruticulosa introgression lines after Lipaphis erysimi (Kaltenbach) infestation. Phytoparasitica. 2018;46:499–509. doi: 10.1007/s12600-018-0686-2. DOI

Onyilagha J.C., Gruber M.Y., Hallett R.H., Holowachuk J., Buckner A., Soroka J.J. Constitutive flavonoids deter flea beetle insect feeding in Camelina sativa L. Biochem. Syst. Ecol. 2012;42:128–133. doi: 10.1016/j.bse.2011.12.021. DOI

Bi J.L., Murphy J.B., Felton G.W. Antinutritive and Oxidative Components as Mechanisms of Induced Resistance in Cotton to Helicoverpa zea. J. Chem. Ecol. 1997;23:97–117. doi: 10.1023/B:JOEC.0000006348.62578.fd. DOI

Jiang Y. Oxidative interactions between the spotted alfalfa aphid (Therioaphis trifolii maculata) (Homoptera: Aphididae) and the host plant Medicago sativa. Bull. Entomol. Res. 1996;86:533–540. doi: 10.1017/S0007485300039328. DOI

Broekgaarden C., Poelman E.H., Steenhuis G., Voorrips R.E., Dicke M., Vosman B. Genotypic variation in genome-wide transcription profiles induced by insect feeding: Brassica oleracea—Pieris rapae interactions. BMC Genom. 2007;8:239. doi: 10.1186/1471-2164-8-239. PubMed DOI PMC

Goggin F.L., Avila C.A., Lorence A. Vitamin C content in plants is modified by insects and influences susceptibility to herbivory. BioEssays. 2010;32:777–790. doi: 10.1002/bies.200900187. PubMed DOI

Hilker M., Fatouros N.E. Plant Responses to Insect Egg Deposition. Annu. Rev. Entomol. 2015;60:493–515. doi: 10.1146/annurev-ento-010814-020620. PubMed DOI

Walker K.S., Bray J.L., Lehman M.E., Lentz-Ronning A.J. Effects of host plant phenolic acids and nutrient status on oviposition and feeding of the cabbage white butterfly, Pieris rapae. Bios. 2014;85:95–101. doi: 10.1893/0005-3155-85.2.95. DOI

Usha Rani P., Pratyusha S. Role of castor plant phenolics on performance of its two herbivores and their impact on egg parasitoid behaviour. BioControl. 2014;59:513–524. doi: 10.1007/s10526-014-9590-y. DOI

Bruessow F., Gouhier-Darimont C., Buchala A., Metraux J.P., Reymond P. Insect eggs suppress plant defence against chewing herbivores. Plant J. 2010;62:876–885. doi: 10.1111/j.1365-313X.2010.04200.x. PubMed DOI

Van Poecke R.M.P., Posthumus M.A., Dicke M. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: Chemical, behavioral, and gene-expression analysis. J. Chem. Ecol. 2001;27:1911–1928. doi: 10.1023/A:1012213116515. PubMed DOI

Dučaiová Z., Sajko M., Mihaličová S., Repčák M. Dynamics of accumulation of coumarin-related compounds in leaves of Matricaria chamomilla after methyl jasmonate elicitation. Plant Growth Regul. 2016;79:81–94. doi: 10.1007/s10725-015-0114-2. DOI

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Simek J., Kovalikova Z., Dohnal V., Tuma J. Accumulation of cadmium in potential hyperaccumulators Chlorophytum comosum and Callisia fragrans and role of organic acids under stress conditions. Environ. Sci. Pollut. Res. 2018;25:28129–28139. doi: 10.1007/s11356-018-2831-3. PubMed DOI

Sajko M., Kovalíková-Dučaiová Z., Paľove-Balang P., Repčák M. Physiological Responses of Matricaria chamomilla to Potassium Nitrate Supply and Foliar Application of Ethephon. J. Plant Growth Regul. 2018;37:360–369. doi: 10.1007/s00344-017-9735-1. DOI

Smilauer P., Lepš J. Multivariate Analysis of Ecological Data Using CANOCO 5. Cambridge University Press; Cambridge, UK: 2014.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...