Accumulation of cadmium in potential hyperaccumulators Chlorophytum comosum and Callisia fragrans and role of organic acids under stress conditions
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2116/2014
Specific Research Project of Faculty of Science, University of Hradec Kralove
CZ.1.07./2.3.00/30.0052
Esperantic Studies Foundation (US)
PubMed
30069781
DOI
10.1007/s11356-018-2831-3
PII: 10.1007/s11356-018-2831-3
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidant capacity, Cadmium, Callisia fragrans, Chlorophytum comosum, Hyperaccumulator, Organic acids,
- MeSH
- Asparagaceae metabolismus MeSH
- biodegradace MeSH
- Commelinaceae metabolismus MeSH
- kadmium metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- látky znečišťující půdu metabolismus MeSH
- výhonky rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kadmium MeSH
- látky znečišťující půdu MeSH
Cadmium (Cd) accumulation, antioxidant activity (AOA), chlorophyll fluorescence (F) and organic acid distribution in Chlorophytum comosum and Callisia fragrans plants exposed to artificially added Cd (40, 160 and 320 mg kg-1) were examined in pot experiment. At the highest Cd concentration, C. comosum accumulated in roots and the aboveground parts up to 1331 and 1054 mg Cd kg-1 DW, and C. fragrans up to 1427 and 1263 mg Cd kg-1 DW, respectively, which are quite near at the level of hyperaccumulator. Cd accumulation in both plant species increased significantly with the increment of soil Cd dosage, and the distribution was roots > shoots > stolons. Values of BC showed rising trend indicating an accumulation potential of both species. The root AOA was positively correlated to Cd addition, especially in C. comosum. Higher values of free SA were found in roots with a significant enhancement at concentrations of 40 and 160 mg kg-1 Cd. It was observed that citric acid significantly reacted in both species, while fumaric acid only in C. comosum in response to Cd which may contribute to Cd chelation. Our data indicate that both species are suitable for phytoextraction of Cd from contaminated soils which increases their value as ornamentals.
Zobrazit více v PubMed
Free Radic Biol Med. 1999 May;26(9-10):1231-7 PubMed
Chemosphere. 2003 Feb;50(6):807-11 PubMed
Ecotoxicol Environ Saf. 2003 May;55(1):64-9 PubMed
Bioresour Technol. 2005 Jan;96(1):125-31 PubMed
Environ Geochem Health. 2004 Jun-Sep;26(2-3):331-5 PubMed
J Trace Elem Med Biol. 2005;18(4):339-53 PubMed
J Biol Inorg Chem. 2006 Jan;11(1):2-12 PubMed
Chemosphere. 2006 Nov;65(8):1348-54 PubMed
Chemosphere. 2007 Jun;68(6):989-1003 PubMed
J Plant Physiol. 2008 Apr 18;165(6):600-11 PubMed
J Plant Physiol. 2008 Jun 16;165(9):920-31 PubMed
J Exp Bot. 2009;60(4):1289-97 PubMed
Plant Physiol Biochem. 2010 May;48(5):374-81 PubMed
Environ Monit Assess. 2012 Jan;184(2):929-37 PubMed
Plant Physiol Biochem. 2012 Aug;57:15-22 PubMed
Trends Plant Sci. 2013 Feb;18(2):92-9 PubMed
Chemosphere. 2013 Jun;92(2):213-7 PubMed
Food Chem. 2014 Mar 15;147:367-76 PubMed
Front Plant Sci. 2014 Jun 03;5:245 PubMed
Chemosphere. 2015 Feb;120:154-64 PubMed
J Hazard Mater. 2014 Sep 15;280:12-9 PubMed
Protoplasma. 2015 Mar;252(2):399-413 PubMed
Protoplasma. 2015 May;252(3):911-24 PubMed
Magn Reson Chem. 2015 May;53(5):379-82 PubMed
Air Qual Atmos Health. 2015;8(3):265-272 PubMed
Int J Phytoremediation. 2016;18(1):48-53 PubMed
Bull Environ Contam Toxicol. 2015 Dec;95(6):784-9 PubMed
BMC Res Notes. 2015 Nov 21;8:698 PubMed
Chemosphere. 2017 Aug;180:86-92 PubMed
Bot Stud. 2013 Dec;54(1):45 PubMed