Accumulation of cadmium in potential hyperaccumulators Chlorophytum comosum and Callisia fragrans and role of organic acids under stress conditions

. 2018 Oct ; 25 (28) : 28129-28139. [epub] 20180801

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30069781

Grantová podpora
2116/2014 Specific Research Project of Faculty of Science, University of Hradec Kralove
CZ.1.07./2.3.00/30.0052 Esperantic Studies Foundation (US)

Odkazy

PubMed 30069781
DOI 10.1007/s11356-018-2831-3
PII: 10.1007/s11356-018-2831-3
Knihovny.cz E-zdroje

Cadmium (Cd) accumulation, antioxidant activity (AOA), chlorophyll fluorescence (F) and organic acid distribution in Chlorophytum comosum and Callisia fragrans plants exposed to artificially added Cd (40, 160 and 320 mg kg-1) were examined in pot experiment. At the highest Cd concentration, C. comosum accumulated in roots and the aboveground parts up to 1331 and 1054 mg Cd kg-1 DW, and C. fragrans up to 1427 and 1263 mg Cd kg-1 DW, respectively, which are quite near at the level of hyperaccumulator. Cd accumulation in both plant species increased significantly with the increment of soil Cd dosage, and the distribution was roots > shoots > stolons. Values of BC showed rising trend indicating an accumulation potential of both species. The root AOA was positively correlated to Cd addition, especially in C. comosum. Higher values of free SA were found in roots with a significant enhancement at concentrations of 40 and 160 mg kg-1 Cd. It was observed that citric acid significantly reacted in both species, while fumaric acid only in C. comosum in response to Cd which may contribute to Cd chelation. Our data indicate that both species are suitable for phytoextraction of Cd from contaminated soils which increases their value as ornamentals.

Zobrazit více v PubMed

Free Radic Biol Med. 1999 May;26(9-10):1231-7 PubMed

Chemosphere. 2003 Feb;50(6):807-11 PubMed

Ecotoxicol Environ Saf. 2003 May;55(1):64-9 PubMed

Bioresour Technol. 2005 Jan;96(1):125-31 PubMed

Environ Geochem Health. 2004 Jun-Sep;26(2-3):331-5 PubMed

J Trace Elem Med Biol. 2005;18(4):339-53 PubMed

J Biol Inorg Chem. 2006 Jan;11(1):2-12 PubMed

Chemosphere. 2006 Nov;65(8):1348-54 PubMed

Chemosphere. 2007 Jun;68(6):989-1003 PubMed

J Plant Physiol. 2008 Apr 18;165(6):600-11 PubMed

J Plant Physiol. 2008 Jun 16;165(9):920-31 PubMed

J Exp Bot. 2009;60(4):1289-97 PubMed

Plant Physiol Biochem. 2010 May;48(5):374-81 PubMed

Environ Monit Assess. 2012 Jan;184(2):929-37 PubMed

Plant Physiol Biochem. 2012 Aug;57:15-22 PubMed

Trends Plant Sci. 2013 Feb;18(2):92-9 PubMed

Chemosphere. 2013 Jun;92(2):213-7 PubMed

Food Chem. 2014 Mar 15;147:367-76 PubMed

Front Plant Sci. 2014 Jun 03;5:245 PubMed

Chemosphere. 2015 Feb;120:154-64 PubMed

J Hazard Mater. 2014 Sep 15;280:12-9 PubMed

Protoplasma. 2015 Mar;252(2):399-413 PubMed

Protoplasma. 2015 May;252(3):911-24 PubMed

Magn Reson Chem. 2015 May;53(5):379-82 PubMed

Air Qual Atmos Health. 2015;8(3):265-272 PubMed

Int J Phytoremediation. 2016;18(1):48-53 PubMed

Bull Environ Contam Toxicol. 2015 Dec;95(6):784-9 PubMed

BMC Res Notes. 2015 Nov 21;8:698 PubMed

Chemosphere. 2017 Aug;180:86-92 PubMed

Bot Stud. 2013 Dec;54(1):45 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...