Antibiosis to Metopolophium dirhodum (Homoptera: Aphididae) in Spring Wheat and Emmer Cultivars
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33295988
PubMed Central
PMC7792919
DOI
10.1093/jee/toaa234
PII: 5919890
Knihovny.cz E-zdroje
- Klíčová slova
- age-stage, aphids, cultivar suitability, plant resistance, population projection, two-sex life table,
- MeSH
- antibióza MeSH
- jedlá semena MeSH
- mšice * MeSH
- pšenice MeSH
- šlechtění rostlin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Yield losses caused by pests, including aphids, can be substantial in cereals. Breeding for resistance against aphids is therefore desirable for enhancing the economic and environmental sustainability of cereal production. The aim of our study was to reveal the degree of antibiosis against Metopolophium dirhodum (Walker) (Homoptera: Aphididae), in four cultivars of spring wheat, Triticum aestivum L. ('Alicia', 'Odeta', 'Libertina', 'Astrid'), and two cultivars of emmer, Triticum turgidum ssp. dicoccum (Schrank ex Schübler) Thell. ('Rudico', 'Tapiruz') (both Poales: Poaceae) under controlled laboratory conditions. Using age-stage, two-sex life table, we quantified responses of M. dirhodum to each cultivar and to project population growth. The spring wheat and emmer cultivars varied in their suitability to M. dirhodum. The cultivar most susceptible to M. dirhodum was the emmer cultivar 'Rudico'; the projected population size of M. dirhodum on this cultivar was one order of magnitude larger than those on other cultivars. The most resistant cultivar was the spring wheat cultivar 'Libertina'. Since emmer is commonly used as a gene source for breeding T. aestivum, we advocate that care be taken to avoid the transmission of genes responsible for suitability to aphids from emmer to T. aestivum.
Zobrazit více v PubMed
Ajmal, M S, Iqbal J, Qayyum M A, Saleem M A, Tayyab M, and Sajjad M. 2018. Preferential influence of wheat varieties (Triticum aestivum L.) on population build-up of aphid (Homoptera: Aphididae) and its natural enemies. J. Entomol. Zool. Stud. 6: 609–612.
Atlıhan, R, Kasap İ, Özgökçe M S, Polat-Akköprü E, and Chi H. 2017. Population growth of Dysaphis pyri (Hemiptera: Aphididae) on different pear cultivars with discussion on curve fitting in life table studies. J. Econ. Entomol. 110: 1890–1898. PubMed
Avni, R, Nave M, Eilam T, Sela H, Alekperov C, Peleg Z, Dvorak J, Korol A, and Distelfeld A. 2014. Ultra-dense genetic map of durum wheat × wild emmer wheat developed using the 90K iSelect SNP genotyping assay. Mol. Breed. 34: 1549–1562.
Avni, R, Nave M, Barad O, Baruch K, Twardziok S O, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, et al. 2017. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 357: 93–97. PubMed
Batyrshina, Z S, Yaakov B, Shavit R, Singh A, and Tzin V. 2020. Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. BMC Plant Biol. 20: 19. PubMed PMC
Belay, T, and Araya A. 2015. Grain and biomass yield reduction due to Russian wheat aphid on bread wheat in northern Ethiopia. Afr. Crop Sci. J. 23: 197–202.
Biondi, A, Mommaerts V, Smagghe G, Viñuela E, Zappalà L, and Desneux N. 2012. The non-target impact of spinosyns on beneficial arthropods. Pest Manag. Sci. 68: 1523–1536. PubMed
Brault, V, Uzest M, Monsion B, Jacquot E, and Blanc S. 2010. Aphids as transport devices for plant viruses. C. R. Biol. 333: 524–538. PubMed
Chandrasekhar, K, Shavit R, Distelfeld A, Christensen S A, and Tzin V. 2018. Exploring the metabolic variation between domesticated and wild tetraploid wheat genotypes in response to corn leaf aphid infestation. Plant Signal. Behav. 13: e1486148. PubMed PMC
Chang, C, Huang C-Y, Dai S-M, Atlıhan R, and Chi H. 2016. Genetically engineered ricin suppresses Bactrocera dorsalis (Diptera: Tephritidae) based on demographic analysis of group-reared life table. J. Econ. Entomol. 109: 987–992. PubMed
Chen, Y H, Gols R, and Benrey B. 2015a. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol. 60: 35–58. PubMed
Chen, Y H, Gols R, Stratton C A, Brevik K A, and Benrey B. 2015b. Complex tritrophic interactions in response to crop domestication: predictions from the wild. Entomol. Exp. Appl. 157: 40–59.
Chi, H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17: 26–34.
Chi, H. 2020a. TIMING-MSChart: a computer program for the population projection based on age-stage, two-sex life table. National Chung Hsing University, Taichung, Taiwan: (http://140.120.197.173/Ecology/)
Chi, H. 2020b. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. National Chung Hsing University, Taichung, Taiwan: (http://140.120.197.173/Ecology/)
Chi, H and Liu H. 1985. Two new methods for the study of insect population ecology. Bull Inst Zool, Acad. Sinica. 24: 225–240.
Chi, H, and Su H Y. 2006. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 35(1): 10–21.
Chi, H, You M, Atlihan R, Smith C L, Kavousi A, Özgökçe M S, Güncan A, Tuan S-J, Fu J-W, Xu Y-Y, et al. 2020. Age-stage, two-sex life table: an introduction to theory, data analysis, and application. Entomol. Gen. 40: 103–124.
Dedryver, C A, Le Ralec A, and Fabre F. 2010. The conflicting relationships between aphids and men: a review of aphid damage and control strategies. C. R. Biol. 333: 539–553. PubMed
Deutsch, C A, Tewksbury J J, Tigchelaar M, Battisti D S, Merrill S C, Huey R B, and Naylor R L. 2018. Increase in crop losses to insect pests in a warming climate. Science. 361: 916–919. PubMed
Dewar, A M, and Denholm I. 2017. Chemical control, pp. 398–425. Invan Emden H F and Harrington R. (eds.), Aphids as crop pests, 2nd edn. CABI, Wallingford, United Kingdom.
Dixon, A F G. 2012. Aphid ecology. Springer Science & Business Media, New York.
Efron, B, and Tibshirani R J. 1993. An introduction to the bootstrap. Chapman and Hall, N ew York
Elek, H, Smart L, Martin J, Ahmad S, Gordon-Weeks R, Welham S, Nadasy M, Pickett J A, and Werner C P. 2013. The potential of hydroxamic acids in tetraploid and hexaploid wheat varieties as resistance factors against the bird-cherry oat aphid, Rhopalosiphum padi. Ann. Appl. Biol. 162: 100–109.
Elek, H, Smart L, Ahmad S, Anda A, Werner C P, and Pickett J A. 2014. A comparison of the levels of hydroxamic acids in Aegilops speltoides and a hexaploid wheat and effects on Rhopalosiphum padi behaviour and fecundity. Acta Biol. Hung. 65: 38–46. PubMed
van Emden, H F and Harrington R. 2017. Aphids as crop pests, 2nd edn. CABI, Wallingford, United Kingdom.
Foster, S P, Devine G, and Devonshire A E. 2017. Insecticide resistance, pp. 426–447. Invan Emden H F and Harrington R. (eds.), Aphids as crop pests, 2nd edn. CABI, Wallingford, United Kingdom.
Girvin, J, Whitworth R J, Rojas L M A, and Smith C M. 2017. Resistance of select winter wheat (Triticum aestivum) cultivars to Rhopalosiphum padi (Hemiptera: Aphididae). J. Econ. Entomol. 110: 1886–1889. PubMed
Havlíčková, H. 1997. Differences in level of tolerance to cereal aphids in five winter wheat cultivars. Rostl. Výroba. 43: 593–596.
He, J, Chen F, Chen S, Lv G, Deng Y, Fang W, Liu Z, Guan Z, and He C. 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J. Plant Physiol. 168: 687–693. PubMed
Honek, A, Martinkova Z, Saska P, and Dixon A F G. 2018. Aphids (Homoptera: Aphididae) on winter wheat: predicting maximum abundance of Metopolophium dirhodum. J. Econ. Entomol. 111: 1751–1759. PubMed PMC
Hu, X S, Liu Y J, Wang Y H, Wang Z, Yu X L, Wang B, Zhang G S, Liu X F, Hu Z Q, Zhao H Y, et al.. 2016. Resistance of wheat accessions to the English grain aphid Sitobion avenae. PLoS One. 11: e0156158. PubMed PMC
Huang, Y B, and Chi H. 2012. Age-stage, two-sexlife tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19: 263–273.
Huang, H W, Chi H, and Smith C L. 2018. Linking demography and consumption of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) Fed on Solanum photeinocarpum (Solanales: Solanaceae): with a new method to project the uncertainty of population growth and consumption. J. Econ. Entomol. 111: 1–9. PubMed
Kazemi, M H, and van Emden H F. 1992. Partial antibiosis to Rhopalosiphum padi in wheat and some phytochemical correlations. Ann. Appl. Biol. 121: 1–9.
Kettles, G J, and Kaloshian I. 2016. The potato aphid salivary effector Me47 is a Glutathione-S-Transferase involved in modifying plant responses to aphid infestation. Front. Plant Sci. 7: 1142. PubMed PMC
Klueken, A M, Poehling H-M, and Hau B. 2008. Attractiveness and host suitability of winter wheat cultivars for cereal aphids (Homoptera: Aphididae). J. Plant Dis. Prot. 115: 114–121.
Lage, J, Skovmand B, and Andersen S B. 2004. Field evaluation of emmer wheat-derived synthetic hexaploid wheat for resistance to Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 97: 1065–1070. PubMed
Mesfin, A, Frohberg R C, Khan K, and Olson T C. 2000. Increased grain protein content and its association with agronomic and end-use quality in two hard red spring wheat populations derived from Triticum turgidum L. var. dicoccoides. Euphytica. 116: 237–242.
Migui, S M, and Lamb R J. 2003. Patterns of resistance to three cereal aphids among wheats in the genus Triticum (Poaceae). Bull. Entomol. Res. 93: 323–333. PubMed
Migui, S M, and Lamb R J. 2004. Seedling and adult plant resistance to Sitobion avenae (Hemiptera: Aphididae) in Triticum monococcum (Poaceae), an ancestor of wheat. Bull. Entomol. Res. 94: 35–46. PubMed
Mou, D F, Lee C C, Smith C L, and Chi H. 2015. Using viable eggs to accurately determine the demographic and predation potential of Harmonia dimidiata (Coleoptera: Coccinellidae). J. Appl. Entomol. 139: 579–591.
Nevo, E. 2001. Genetic resources of wild emmer, Triticum dicoccoides, for wheat improvement in the third Millennium. Isr. J. Plant Sci. 49: 77–92.
Nicholson, S J, Hartson S D, and Puterka G J. 2012. Proteomic analysis of secreted saliva from Russian wheat aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. J. Proteomics. 75: 2252–2268. PubMed
Niemeyer, H, Copaja S, and Barria B. 1992. The Triticeae as sources of hydroxamic acids, secondary metabolites in wheat conferring resistance against aphids. Hereditas. 116: 295–299.
Ninkovic, V, Olsson U, and Pettersson J. 2002. Mixing barley cultivars affects aphid host plant acceptance in field experiments. Entomol. Exp. Appl. 102: 177–182.
Özgökçe, M S, and Atlıhan R. 2005. Biological features and life table parameters of the mealy plum aphid Hyalopterus pruni on different apricot cultivars. Phytoparasitica. 33: 7–14.
Özgökçe, M S, Chi H, Atlıhan R, and Kara H. 2018. Demography and population projection of Myzus persicae (Sulz.) (Hemiptera: Aphididae) on five pepper (Capsicum annuum L.) cultivars. Phytoparasitica. 46: 153–167.
Papp, M, and Mesterházy Á. 1993. Resistance to bird cherry-oat aphid (Rhopalosiphum padi L.) in winter wheat varieties. Euphytica. 67: 49–57.
Papp, M, and Mesterházy Á. 1996. Resistance of winter wheat to cereal leaf beetle (Coleoptera: Chrysomelidae) and bird cherry-oat aphid (Homoptera: Aphididae). J. Econ. Entomol. 89: 1649–1657.
Pedigo, L P, Hutchins S H, and Higley L G. 1986. Economic injury levels in theory and practice. Ann. Rev. Entomol. 31: 341–368.
Pisa, L W, Amaral-Rogers V, Belzunces L P, Bonmatin J M, Downs C A, Goulson D, Kreutzweiser D P, Krupke C, Liess M, McField M, et al. 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. Int. 22: 68–102. PubMed PMC
Polat-Akköprü, E, Atlıhan R, Okut H, and Chi H. 2015. Demographic assessment of plant cultivar resistance to insect pests: a case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. J. Econ. Entomol. 108: 378–387. PubMed
Roberts, J J, and Foster J E. 1983. Effect of leaf pubescence in wheat on the bird cherry oat aphid (Homoptera: Aphidae). J. Econ. Entomol. 76: 1320–1322.
Saemi, S, Rahmani H, Kavosi A, and Chi H. 2017. Group-rearing did not affect the life table and predation rate of Phytoseiulus persimilis (Acari: Phytoseiidae) fed on Tetranychus urticae. Syst. Appl. Acarol. 22(10): 1698–1715.
Saska, P, Skuhrovec J, Lukáš J, Chi H, Tuan S J, and Honěk A. 2016. Treatment by glyphosate-based herbicide alters life history parameters of the rose-grain aphid Metopolophium dirhodum. Sci. Rep. 6: 27801. PubMed PMC
Saska, P, Skuhrovec J, Tylová E, Platková H, Tuan S-J, Hsu Y-T, and Vítámvás P. 2020. Leaf structural traits rather than drought resistance determine aphid performance on spring wheat. J. Pest Sci. doi: 10.1007/s10340-020-01253-3 DOI
Smith, C M. 2005. Plant resistance to arthropods: molecular and conventional approaches. Springer, Dordrecht, the Netherlands.
Sotherton, N W, and van Emden H F. 1982. Laboratory assessments of resistance to the aphids Sitobion avenae and Metopolophium dirhodum in three Triticum species and two modern wheat cultivars. Ann. Appl. Biol. 101: 99–107.
Stevens, M, and Lacomme C H. 2017. Transmission of plant viruses, pp. 323–361. Invan Emden H F and Harrington R (eds.), Aphids as Crop Pests, 2nd edn. CABI, Wallingford, United Kingdom.
Tuan, S J, Lee C C, and Chi H. 2014a. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70: 805–813. PubMed
Tuan, S-J, Lee C-C, and Chi H. 2014b. Erratum: population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70: 1936. PubMed
Tuan, S J, Lin Y H, Yang C M, Atlihan R, Saska P, and Chi H. 2016. Survival and reproductive strategies in two-spotted spider mites: demographic analysis of arrhenotokous parthenogenesis of Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 109: 502–509. PubMed
Wise, I L, Lamb R J, and Smith M A H. 2001. Domestication of wheats (Gramineae) and their susceptibility to herbivory by Sitodiplosis mosellana (Diptera: Cecidomyiidae). Can. Entomol. 133: 255–267.