Treatment by glyphosate-based herbicide alters life history parameters of the rose-grain aphid Metopolophium dirhodum

. 2016 Jun 15 ; 6 () : 27801. [epub] 20160615

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27302015

Glyphosate is the number one herbicide in the world. We investigated the sub-lethal effects of this herbicide on the aphid Metopolophium dirhodum (Walker), using an age-stage, two-sex life table approach. Three concentrations of the herbicide (low - 33.5, medium - 66.9 and high - 133.8 mmol dm(-3) of active ingredient) and distilled water as the control were used. The LC50 of the IPA salt of glyphosate on M. dirhodum was equivalent to 174.9 mmol dm(-3) of the active ingredient (CI95: 153.0, 199.0). The population parameters were significantly negatively affected by herbicide application, and this negative effect was progressive with the increasing concentration of the herbicide. A difference of two orders of magnitude existed in the predicted population development of M. dirhodum between the high concentration of the herbicide and the control. This is the first study that comprehensively documents such a negative effect on the population of an herbivorous insect.

Zobrazit více v PubMed

Copping L. G. & Menn J. J. Biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci. 56, 651–676 (2000).

Senthil-Nathan S. A Review of Biopesticides and Their Mode of Action Aganinst Insect Pests In Environmental Sustainability (eds. Thankgavel P. & Sridevi G.) 49–63 (Springer India, 2015).

Jeyaratnam J. Acute pesticide poisoning: A major global health problem. World Health Stat. Quart. 43, 139–144. PubMed

Kamrin M. A. Pesticide Profiles: Toxicity, Environmental Impact, and Fate (CRC Press, 1997).

Woodburn A. T. Glyphosate: production, pricing and use worldwide. Pest Manag. Sci. 56, 309–312 (2000).

Dill G. M. et al.. Glyphosate: Discovery, Development, Applications and Properties In Glyphosate Resistance in Crops and Weeds: History, Development, and Management (ed. Nandula V. K.) 1–33 (John Wiley & Sons, 2010).

Paoletti M. G. & Pimentel D. Environmental risks of pesticides versus genetic engineering for agricultural pest control. J. Agric. Environ. Ethics 12, 279–303 (2000).

Steinmann H. H., Dickeduisberg M. & Theuvsen L. Uses and benefits of glyphosate in German arable farming. Crop Protect. 42,164–169 (2012).

Grossbard E. & Atkinson D. The Herbicide Glyphosate (Buttersworths, 1985).

Giesy J. P., Dobson S. & Solomon K. R. Ecotoxicological risk assessment for Roundup® herbicide. Rev. Environ. Contamin. Toxicol. 167, 35–120 (2000).

Druart C., Millet M., Scheifler R., Delhomme O. & de Vaufleury A. Glyphosate and glufosinate-based herbicides: fate in soil, transfer to, and effects on land snails. J. Soils Sediments 11, 1373–1384 (2011).

Annett R., Habibi H. R. & Hontela A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environments. J. Appl. Toxicol. 34, 458–479 (2014). PubMed

Myers J. P. et al.. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a concensus statement. Environ. Health 15, 19 (2016). PubMed PMC

Feng P. C. C. et al.. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean. Proc Natl Acad. Sci. USA 102, 17290–17295 (2005). PubMed PMC

Gaupp-Berghausen M., Hofer M., Rewald B. & Zaller J. G. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci. Rep. 5, (2015). PubMed PMC

Schneider M. I., Sanchez N., Pineda S., Chi H. & Ronco A. Impact of glyphosate on the development, fertility and demography of Chrysoperla externa (Neuroptera: Chrysopidae): Ecological approach. Chemosphere 76, 1451–1455 (2009). PubMed

Desneux N., Decourtye A. & Delpuech J. M. The sublethal effects of pesticides on beneficial arthropods. Ann. Rev. Entomol. 52, 81–106 (2007). PubMed

Egan J. F., Bohnenblust E., Goslee S., Mortensen D. & Tooker J. Herbicide drift can affect plant and arthropod communities. Agr. Ecosyst. Environ. 185, 77–87 (2014).

Dewar A. M., Haylock L. A., Bean K. M. & May M. J. Delayed control of weeds in glyphosate-tolerant sugar beet and the consequences on aphid infestation and yield. Pest Manag. Sci. 56, 345–350 (2000).

Albajes R., Lumbierres B. & Pons X. Responsiveness of arthropod herbivores and their natural enemies to modified weed management in corn. Environ. Entomol. 38, 944–954 (2009). PubMed

Dahlin I. & Ninkovic V. Aphid performance and population development on their host plants is affected by weed-crop interactions. J. Appl. Ecol. 50, 1281–1288 (2013).

Wright M. A., Kendall D. A. & Smith B. D. Toxicity of paraquat, paraquat diquat and glyphosate to the cereal aphid Rhopalosiphum padi. Ann. Appl. Biol. 106, 8–9 (1985).

Hahn M., Geisthardt M. & Bruhl C. A. Effects of herbicide-treated host plants on the development of Mamestra brassicae L. catterpillars. Environ. Toxicol. Chem. 33, 2633–2638 (2014). PubMed

Kjaer C. & Heimbach U. Relationships between sulfonylurea herbicide treatment of host plants and the performance of herbivorous insects. Pest Manag. Sci. 57, 1161–1166 (2001). PubMed

Burrows M. E. L., Boerboom C. M., Gaska J. M. & Grau C. R. The relationship between Aphis glycines and Soybean mosaic virus incidence in different pest management systems. Plant Dis. 89, 926–934 (2005). PubMed

Lipok J. Dual action of phosphonate herbicides in plants affected by herbivore - model study on black bean aphid Aphis fabae rearing on broad bean Vicia faba plants. Ecotoxicol. Environ. Safety 72, 1701–1706 (2009). PubMed

Stark J. D. & Banks J. E. Population-level effects of pesticides and other toxicants on arthropods. Ann. Rev. Entomol. 48, 505–519 (2003). PubMed

Stark J. D., Sugayama R. L. & Kovaleski A. Why demographic and modeling approaches should be adopted for estimating the effects of pesticides on biocontrol agents. BioControl 52, 365–374 (2007).

Chi H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34 (1988).

Chi H. & Liu H. Two new methods for the study of insect population ecology. Bull. Inst. Zool., Acad. Sinica 24, 225–240 (1985).

Chi H. & Su H. Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 35, 10–21 (2006).

Tuan S.-J. et al.. Survival and reproductive strategies in two-spotted spider mites: demographic analysis of arrhenotokous parthenogenesis of Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 109, 502–509 (2016). PubMed

Monsanto Europe S. A. Roundup Aktiv 140ml koncentrát. [In Czech]. Available at: http://www.roundup-garden.cz/produktu/roundup-aktiv-140-ml-koncentrat (Accessed: 5th January 2015) (2015).

Honek A., Martinkova Z. & Lipavska H. Distribution of Metopolophium dirhodum in maize and cereals In Aphids in Natural and Managed Ecosystems (eds. Nieto-Nafria J. M., Dixon A. F. G.) 569–578 (Universidad de Leon, 1998).

Gao H.-H. et al.. Life table evaluation of survival and reproduction of the aphid, Sitobion avenae, exposed to cadmium. J. Insect Sci. 12, 8 pp. (2012). PubMed PMC

Hu Z.-Q., Zhao H.-Y. & Thieme T. The effects of enhanced ultraviolet-B radiation on the biology of green and brown morphs of Sitobion avenae (Hemiptera: Aphididae). Environ. Entomol. 42, 578–585 (2013). PubMed

Hu Z.-Q., Zhao H.-Y. & Thieme T. Comparison of the potential rate of population increase of brown and green color morphs of Sitobion avenae (Homoptera: Aphididae) on barley infected and uninfected with Barley yellow dwarf virus. Insect Sci. 21, 326–333 (2014). PubMed

He J., Gao H.-H., Gao Z., Monika W. & Zhao H.-Y. Life table analysis of the performance of aphid Sitobion avenae (Homoptera: Aphididae) nymphs exposed to a static magnetic field. Arch. Biol. Sci. 65, 1415–1422 (2013).

Akca I., Ayvaz T., Yazici E., Smith C. L. & Chi H. Demography and population projection of Aphis fabae (Hemiptera: Aphididae): with additional comments on life table research criteria. J. Econ. Entomol. 108, 1466–1478 (2015). PubMed

Polat Akkopru E., Atlihan R., Okut H. & Chi H. Demographic assessment of plant cultivar resistance to insect pests: a case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. J. Econ. Entomol. 108, 378–387 (2015). PubMed

Silva A. A., Varanda E. M. & Barosela J. R. Resistance and susceptibility of alfalfa (Medicago sativa L.) cultivars to the aphid Theorioaphis maculata (Homoptera: Aphididae): insect biology and cultivar evaluation. Insect Sci. 13, 55–66 (2006).

Sun Y.-C., Feng L., Gao F. & Ge F. Effects of elevated CO2 and plant genotype on interactions among cotton, aphids and parasitoids. Insect Sci. 18, 451–461 (2011).

Honek A. Geographical variation in thermal requirements for insect development. Eur. J. Entomol. 93, 303–312 (1996).

Aleosfoor M. & Fekrat L. Life table parameters and development of Aphis nerri (Hem.: Aphididae) at five different temperatures under laboratory conditions. J. Entomol. Soc. Iran 33, 1–11 (2014).

Bayhan E., Olmez-Bayhan S., Ulusoy M. R. & Chi H. Effect of temperature on development, mortality, fecundity, and reproduction of Aphis rumicis L. (Homoptera: Aphididae) on broadleaf dock (Rumex obtusifolius) and Swiss chard (Beta vulgaris vulgaris var. cida). J. Pest Sci. 79, 57–61 (2006).

Huang Y.-B. & Chi H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19, 263–273 (2012).

Holman J. Host Plant Catalogue of Aphids (Springer Science and Business Media B.V., 2009).

The R Development Core Team. An Introduction to R. Available at: http://www.r-project.org/ (Accessed: 1st June 2015).

Crawley M. J. Statistics: An Introduction using R (John Wiley and Sons, 2005) (2014).

Chi H. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. National Chung Hsing University, Taichung, Taiwan (2015).

Goodman D. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 119, 803–823 (1982).

Efron B. & Tibshirani R. J. An Introduction to the Bootstrap (Chapman and Hall, 1993).

Mou D.-F., Lee C.-C., Smith C. L. & Chi H. Using viable eggs to accurately determine the demographic andpredation potential of Harmonia dimidiata (Coleoptera: Coccinellidae). J. App. Entomol. 139, 579–591 (2015).

Chi H. TIMING-MSChart: a computer program for the population projection based on age-stage, two-sex life table. National Chung Hsing University, Taichung, Taiwan (2015).

Chi H. Timing of control based on the stage structure of pest populations – a simulation approach. J. Econ. Entomol. 83, 1143–1150 (1990).

Tuan S.-J., Lee C.-C. & Chi H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70, 805–813 (2014). PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...