Disruption of Cell Adhesion and Cytoskeletal Networks by Thiol-Functionalized Silica-Coated Iron Oxide Nanoparticles
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-13323S
Grantová Agentura České Republiky
PubMed
33302486
PubMed Central
PMC7764502
DOI
10.3390/ijms21249350
PII: ijms21249350
Knihovny.cz E-zdroje
- Klíčová slova
- cell adhesion, cytoskeleton, cytotoxicity, focal adhesion kinase, magnetic nanoparticles,
- MeSH
- buněčná adheze účinky léků MeSH
- buňky A549 MeSH
- cytoskelet účinky léků MeSH
- lidé MeSH
- magnetické nanočástice oxidů železa chemie toxicita MeSH
- oxid křemičitý chemie MeSH
- proliferace buněk účinky léků MeSH
- sulfhydrylové sloučeniny chemie MeSH
- železo chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid křemičitý MeSH
- sulfhydrylové sloučeniny MeSH
- železo MeSH
One of the major obstacles that limits the use of magnetic nanoparticles in biomedical applications is their potential toxicity. In the present study, we evaluated the cytotoxic effects of thiol-functionalized silica-coated iron oxide (Fe3O4@SiO2-SH) nanoparticles using human lung epithelial cells A549. We investigated the effect of Fe3O4@SiO2-SH nanoparticles on the cell viability, proliferation, cell cycle distribution, adhesion, apoptosis, and the orientation of the cytoskeletal networks, as well as on expression of proteins involved in cell death, cell survival, and cell adhesion. We demonstrated that exposure of A549 cells to Fe3O4@SiO2-SH nanoparticles resulted in severe disruption of the actin microfilaments and microtubule cytoskeleton and reduced the size of focal adhesions. Furthermore, cell adhesion was significantly affected as well as the phosphorylation of focal adhesion kinase (FAK), extracellular-signal-regulated kinase (ERK), and p38. Our findings highlight the need for in-depth cytotoxic evaluation of nanoparticles supporting their safer use, especially in biomedical applications.
Zobrazit více v PubMed
Wang Y., Xu C., Ow H. Commercial Nanoparticles for Stem cell labeling and tracking. Theranostics. 2013;3:544–560. doi: 10.7150/thno.5634. PubMed DOI PMC
Wilhelm C., Gazeau F. Universal cell labelling with anionic magnetic nanoparticles. Biomaterials. 2008;29:3161–3174. doi: 10.1016/j.biomaterials.2008.04.016. PubMed DOI
Malvindi M.A., Greco A., Conversano F., Figuerola A., Corti M., Bonora M., Lascialfari A., Doumari H.A., Moscardini M., Cingolani R., et al. Magnetic/Silica nanocomposites as dual-mode contrast agents for combined magnetic resonance imaging and ultrasonography. Adv. Funct. Mater. 2011;21:2548–2555. doi: 10.1002/adfm.201100031. DOI
Yi P., Chen G., Zhang H., Tian F., Tana B., Dai J., Wang Q., Deng Z. Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7 T. Biomaterials. 2013;34:3010–3019. doi: 10.1016/j.biomaterials.2013.01.022. PubMed DOI
Talebloo N., Gudi M., Robertson N., Wang P. Magnetic Particle Imaging: Current Applications in Biomedical Research. J. Magn. Reson. Imaging. 2020;51:1659–1668. doi: 10.1002/jmri.26875. PubMed DOI
Klostergaard J., Seeney C.E. Magnetic nanovectors for drug delivery. Nanomedicine. 2012;8:S37–S50. doi: 10.1016/j.nano.2012.05.010. PubMed DOI
Rudzka K., Viota J.L., Muñoz-Gamez J.A., Carazo A., Ruiz-Extremera A., Delgado Á.V. Nanoengineering of doxorubicin delivery systems with functionalized maghemite nanoparticles. Colloids Surf. B Biointerfaces. 2013;111:88–96. doi: 10.1016/j.colsurfb.2013.05.010. PubMed DOI
Olsvik O., Popovic T., Skjerve E., Cudjoe K.S., Hornes E., Ugelstad J., Uhlen M. Magnetic separation techniques in diagnostic microbiology. Clin. Microbiol. Rev. 1994;7:43–54. doi: 10.1128/CMR.7.1.43. PubMed DOI PMC
Haik Y., Pai V., Chen C.-J. Development of magnetic device for cell separation. J. Magn. Magn. Mater. 1999;194:254–261. doi: 10.1016/S0304-8853(98)00559-9. DOI
Brero F., Albino M., Antoccia A., Arosio P., Avolio M., Berardinelli F., Bettega D., Calzolari P., Ciocca M., Corti M., et al. Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment. Nanomaterials. 2020;10:1919. doi: 10.3390/nano10101919. PubMed DOI PMC
Nemec S., Kralj S., Wilhelm C., Abou-Hassan A., Rols M.-P., Kolosnjaj-Tabi J. Comparison of Iron Oxide Nanoparticles in Photothermia and Magnetic Hyperthermia: Effects of Clustering and Silica Encapsulation on Nanoparticles’ Heating Yield. Appl. Sci. 2020;10:7322. doi: 10.3390/app10207322. DOI
McBain S.C., Yiu H.H., Dobson J. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomed. 2008;3:169–180. PubMed PMC
Wu W., He Q., Jiang C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008;3:397–415. doi: 10.1007/s11671-008-9174-9. PubMed DOI PMC
Kunzmann A., Andersson B., Vogt C., Feliu N., Ye F., Gabrielsson S., Toprak M.S., Buerki-Thurnherr T., Laurent S., Vahter M., et al. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol. Appl. Pharmacol. 2011;25:81–93. doi: 10.1016/j.taap.2011.03.011. PubMed DOI
Davila-Ibanez A.B., Salgueirino V., Martinez-Zorzano V., Marino-Fernandez R., Garcia-Lorenzo A., Maceira-Campos M., Muñoz-Ubeda M., Junquera E., Aicart E., Rivas J., et al. Magnetic Silica Nanoparticle Cellular Uptake and Cytotoxicity regulated by Electrostatic Polyelectrolytes-DNA Loading at their Surface. ACS Nano. 2012;6:747–759. doi: 10.1021/nn204231g. PubMed DOI
Biju V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 2014;43:744–764. doi: 10.1039/C3CS60273G. PubMed DOI
Liberman A., Mendez N., Trogler W.C., Kummel A.C. Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf. Sci. Rep. 2014;69:132–158. doi: 10.1016/j.surfrep.2014.07.001. PubMed DOI PMC
Nakamura M., Ishimura K. Synthesis and characterization of organosilica nanoparticles prepared from 3-mercaptopropyltrimethoxysilane as the single silica source. J. Phys. Chem. C. 2007;111:18892–18898. doi: 10.1021/jp075798o. DOI
Mun E.A., Williams A.C., Khutoryanskiy V.V. Adhesion of thiolated silica nanoparticles to urinary bladder mucosa: Effects of PEGylation, thiol content and particle size. Int. J. Pharmaceut. 2016;512:32–38. doi: 10.1016/j.ijpharm.2016.08.026. PubMed DOI
Yan Y., Fu J., Wang T.F., Lu X.Y. Controlled release of silyl ether camptothecin from thiol-ene click chemistry-functionalized mesoporous silica nanoparticles. Acta Biomater. 2017;51:471–478. doi: 10.1016/j.actbio.2017.01.062. PubMed DOI
Mejias R., Gutierrez L., Salas G., Perez-Yague S., Zotes T.M., Lazaro F.J., Morales M.P., Barber D.F. Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications. J. Control. Release. 2013;171:225–233. doi: 10.1016/j.jconrel.2013.07.019. PubMed DOI
De Lima R., Oliveira J.L., Murakami P.S.K., Molina M.M., Itri R., Haddad P.S., Seabra A.B. Iron oxide nanoparticles show no toxicity in the comet assay in lymphocytes: A promising vehicle as a nitric oxide releasing nanocarrier in biomedical applications. J. Phys. Conf. Ser. 2013;429:012021. doi: 10.1088/1742-6596/429/1/012021. DOI
Seabra A.B., Pasquôto T., Ferrarini A.C.F., da Cruz Santos M., Haddad P.S., de Lima R. Preparation, Characterization, Cytotoxicity, and Genotoxicity Evaluations of Thiolated-and S-Nitrosated Superparamagnetic Iron Oxide Nanoparticles: Implications for Cancer Treatment. Chem. Res. Toxicol. 2014;27:1207–1218. doi: 10.1021/tx500113u. PubMed DOI
Liu Y., Chen Z., Gu N., Wang J. Effects of DMSA coated Fe3O4 magnetic nanoparticles on global gene expression of mouse macrophage RAW264.7 cells. Toxicol. Lett. 2011;205:130–139. doi: 10.1016/j.toxlet.2011.05.1031. PubMed DOI
Ge G., Wu H., Xiong F., Zhang Y., Guo Z., Bian Z., Xu J., Gu C., Gu N., Chen X., et al. The cytotoxicity evaluation of magnetic iron oxide nanoparticles on human aortic endothelial cells. Nanoscale Res. Lett. 2013;8:215. doi: 10.1186/1556-276X-8-215. PubMed DOI PMC
Oh Y., Je J.Y., Moorthy M.S., Seo H., Cho W.H. pH and NIR-light-responsive magnetic iron oxide nanoparticles for mitochondria-mediated apoptotic cell death induced by chemo-photothermal therapy. Int. J. Pharm. 2017;531:1–3. doi: 10.1016/j.ijpharm.2017.07.014. PubMed DOI
Pisanic T.R., 2nd, Blackwell J.D., Shubayev V.I., Finones R.R., Jin S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials. 2007;28:2572–2581. doi: 10.1016/j.biomaterials.2007.01.043. PubMed DOI
Zhang J.M., Zhai S.R., Zhai B., An Q.D., Tian G. Crucial Factors Affecting the Physicochemical Properties of Sol–gel Produced Fe3O4@SiO2–NH2 Core–shell Nanomaterials. J. Sol. Gel Sci. Technol. 2012;64:347–357. doi: 10.1007/s10971-012-2864-x. DOI
Stöber W., Fink A., Bohn E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968;26:62–69. doi: 10.1016/0021-9797(68)90272-5. DOI
Wang Z., Xu J., Hu Y., Zhao H., Zhou J., Liu Y., Lou Z., Xu X. Functional Nanomaterials: Study on Aqueous Hg(II) Adsorption by Magnetic Fe3O4@SiO2-SH Nanoparticles. J. Taiwan Inst. Chem. Eng. 2016;60:394–402. doi: 10.1016/j.jtice.2015.10.041. DOI
Xing Z., Zhu L., Jackson J.A., Gabos S., Sun X.J., Wang X.B., Xu X. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem. Res. Toxicol. 2005;18:154–161. doi: 10.1021/tx049721s. PubMed DOI
Xing J.Z., Zhu L., Gabos S., Xie L. Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity. Toxicol. In Vitro. 2006;20:995–1004. doi: 10.1016/j.tiv.2005.12.008. PubMed DOI
Smith J., Tho L.M., Xu N., Gillespie D.A. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv. Cancer Res. 2010;108:73–112. PubMed
Giacinti C., Giordano A. RB and cell cycle progression. Oncogene. 2006;25:5220–5227. doi: 10.1038/sj.onc.1209615. PubMed DOI
Soenen S.J.H., Nuytten N., De Meyer S.F., De Smedt S.C., De Cuyper M. High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling. Small. 2010;6:832–842. doi: 10.1002/smll.200902084. PubMed DOI
Choudhury D., Xavier P.L., Chaudhari K., John R., Dasgupta A.K., Pradeep T., Chakrabarti G. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis. Nanoscale. 2013;5:4476–4489. doi: 10.1039/c3nr33891f. PubMed DOI
Schaller M. Paxillin: A focal adhesion-associated adaptor protein. Oncogene. 2001;20:6459–6472. doi: 10.1038/sj.onc.1204786. PubMed DOI
Yue J., Xie M., Gou X., Lee P., Schneider M.D., Wu X. Microtubules regulate focal adhesion dynamics through MAP4K4. Dev. Cell. 2014;31:572–585. doi: 10.1016/j.devcel.2014.10.025. PubMed DOI PMC
Rodriguez O.C., Schaefer A.W., Mandato C.A., Forscher P., Bement W.M., Waterman-Storer C.M. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat. Cell Biol. 2003;5:599–609. doi: 10.1038/ncb0703-599. PubMed DOI
Ibrahim M., Schoelermann J., Mustafa K., Cimpan M.R. TiO2 nanoparticles disrupt cell adhesion and the architecture of cytoskeletal networks of human osteoblast-like cells in a size dependent manner. J. Biomed. Mater. Res. A. 2018;106:2582–2593. doi: 10.1002/jbm.a.36448. PubMed DOI
Královec K., Havelek R., Koutová D., Veverka P., Kubíčková L., Brázda P., Kohout J., Herynek V., Vosmanská M., Kaman O. Magnetic nanoparticles of Ga-substituted ε-Fe2O3 for biomedical applications: Magnetic properties, transverse relaxivity, and effects of silica-coated particles on cytoskeletal networks. J. Biomed. Mater. Res. A. 2020;108:1563–1578. doi: 10.1002/jbm.a.36926. PubMed DOI
Salasznyk R.M., Klees R.F., Williams W.A., Boskey A., Plopper G.E. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp. Cell. Res. 2007;313:22–37. doi: 10.1016/j.yexcr.2006.09.013. PubMed DOI PMC
Mitra S.K., Hanson D.A., Schlaepfer D.D. Focal adhesion kinase: In command and control of cell motility. Nat. Rev. Mol. Cell. Biol. 2005;6:56–68. doi: 10.1038/nrm1549. PubMed DOI
Webb D.J., Donais K., Whitmore L.A., Thomas S.M., Turner C.E., Parsons J.T., Horwitz A.F. FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell. Biol. 2004;6:54–161. doi: 10.1038/ncb1094. PubMed DOI
Owen J.D., Ruest P.J., Fry D.W., Hanks S.K. Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol. Cell. Biol. 1999;19:4806–4818. doi: 10.1128/MCB.19.7.4806. PubMed DOI PMC
Seko Y., Takahashi N., Tobe K., Kadowaki T., Yazaki Y. Pulsatile stretch activates mitogen-activated protein kinase (MAPK) family members and focal adhesion kinase [p125(FAK)] in cultured rat cardiac myocytes. Biochem. Biophys. Res. Commun. 1999;259:8–14. doi: 10.1006/bbrc.1999.0720. PubMed DOI
Velarde V., Ullian M.E., Morinelli T.A., Mayfield R.K., Jaffa A.A. Mechanisms of MAPK activation by bradykinin in vascular smooth muscle cells. Am. J. Physiol. Cell. Physiol. 1999;277:C253–C261. doi: 10.1152/ajpcell.1999.277.2.C253. PubMed DOI
Sáenz-Morales D., Conde E., Escribese M.M., García-Martos M., Alegre L., Blanco-Sánchez I., García-Bermejo M.L. ERK1/2 mediates cytoskeleton and focal adhesion impairment in proximal epithelial cells after renal ischemia. Cell. Physiol. Biochem. 2009;23:285–294. doi: 10.1159/000218175. PubMed DOI