• This record comes from PubMed

Long-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet α-Fe2O3

. 2020 Dec 10 ; 11 (1) : 6332. [epub] 20201210

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Links

PubMed 33303758
PubMed Central PMC7729397
DOI 10.1038/s41467-020-20155-7
PII: 10.1038/s41467-020-20155-7
Knihovny.cz E-resources

Antiferromagnetic materials can host spin-waves with polarizations ranging from circular to linear depending on their magnetic anisotropies. Until now, only easy-axis anisotropy antiferromagnets with circularly polarized spin-waves were reported to carry spin-information over long distances of micrometers. In this article, we report long-distance spin-transport in the easy-plane canted antiferromagnetic phase of hematite and at room temperature, where the linearly polarized magnons are not intuitively expected to carry spin. We demonstrate that the spin-transport signal decreases continuously through the easy-axis to easy-plane Morin transition, and persists in the easy-plane phase through current induced pairs of linearly polarized magnons with dephasing lengths in the micrometer range. We explain the long transport distance as a result of the low magnetic damping, which we measure to be ≤ 10-5 as in the best ferromagnets. All of this together demonstrates that long-distance transport can be achieved across a range of anisotropies and temperatures, up to room temperature, highlighting the promising potential of this insulating antiferromagnet for magnon-based devices.

See more in PubMed

Hutchings MT, Samuelsen EJ. Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties. Phys. Rev. B. 1972;6:3447–3461. doi: 10.1103/PhysRevB.6.3447. DOI

Samuelsen EJ, Shirane G. Inelastic neutron scattering investigation of spin waves and magnetic interactions in α-Fe2O3. Phys. Status Solidi B. 1970;42:241–256. doi: 10.1002/pssb.19700420125. DOI

Baltz V, et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018;90:015005. doi: 10.1103/RevModPhys.90.015005. DOI

Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016;11:231–241. doi: 10.1038/nnano.2016.18. PubMed DOI

Rezende SM, Azevedo A, Rodríguez-Suárez RL. Introduction to antiferromagnetic magnons. J. Appl. Phys. 2019;126:151101. doi: 10.1063/1.5109132. DOI

Mook A, Göbel B, Henk J, Mertig I. Magnon transport in noncollinear spin textures: anisotropies and topological magnon Hall effects. Phys. Rev. B. 2017;95:020401. doi: 10.1103/PhysRevB.95.020401. DOI

Tveten EG, Qaiumzadeh A, Brataas A. Antiferromagnetic domain wall motion induced by spin waves. Phys. Rev. Lett. 2014;112:147204. doi: 10.1103/PhysRevLett.112.147204. PubMed DOI

Ross A, et al. Propagation length of antiferromagnetic magnons governed by domain configurations. Nano Lett. 2020;20:306–313. doi: 10.1021/acs.nanolett.9b03837. PubMed DOI

Bender SA, Skarsvåg H, Brataas A, Duine RA. Enhanced spin conductance of a thin-film insulating antiferromagnet. Phys. Rev. Lett. 2017;119:056804. doi: 10.1103/PhysRevLett.119.056804. PubMed DOI

Rezende SM, Rodríguez-Suárez RL, Azevedo A. Diffusive magnonic spin transport in antiferromagnetic insulators. Phys. Rev. B. 2016;93:054412. doi: 10.1103/PhysRevB.93.054412. DOI

Takei S, Halperin BI, Yacoby A, Tserkovnyak Y. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B. 2014;90:094408. doi: 10.1103/PhysRevB.90.094408. PubMed DOI

Qaiumzadeh A, Skarsvåg H, Holmqvist C, Brataas A. Spin superfluidity in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 2017;118:137201. doi: 10.1103/PhysRevLett.118.137201. PubMed DOI

Cheng R, Xiao J, Niu Q, Brataas A. Spin pumping and spin-transfer torques in antiferromagnets. Phys. Rev. Lett. 2014;113:057601. doi: 10.1103/PhysRevLett.113.057601. PubMed DOI

Johansen Ø, Brataas A. Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets. Phys. Rev. B. 2017;95:220408. doi: 10.1103/PhysRevB.95.220408. DOI

Li J, et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature. 2020;578:70–74. doi: 10.1038/s41586-020-1950-4. PubMed DOI

Lebrun R, et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature. 2018;561:222. doi: 10.1038/s41586-018-0490-7. PubMed DOI PMC

Stepanov P, et al. Long-distance spin transport through a graphene quantum Hall antiferromagnet. Nat. Phys. 2018;14:967. doi: 10.1038/s41567-018-0237-2. DOI

Yuan W, et al. Experimental signatures of spin superfluid ground state in canted antiferromagnet Cr2O3 via nonlocal spin transport. Sci. Adv. 2018;4:eaat1098. doi: 10.1126/sciadv.aat1098. PubMed DOI PMC

Artman JO, Murphy JC, Foner S. Magnetic anisotropy in antiferromagnetic corundum-type sesquioxides. Phys. Rev. 1965;138:A912–A917. doi: 10.1103/PhysRev.138.A912. DOI

Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960;120:91–98. doi: 10.1103/PhysRev.120.91. DOI

Ellis DS, et al. Magnetic states at the surface of alpha-Fe2O3 thin films doped with Ti, Zn, or Sn. Phys. Rev. B. 2017;96:094426. doi: 10.1103/PhysRevB.96.094426. DOI

Elliston PR, Troup GJ. Some antiferromagnetic resonance measurements in α-Fe2O3. J. Phys. C. Solid State Phys. 1968;1:169. doi: 10.1088/0022-3719/1/1/320. DOI

Cornelissen LJ, Shan J, van Wees BJ. Temperature dependence of the magnon spin diffusion length and magnon spin conductivity in the magnetic insulator yttrium iron garnet. Phys. Rev. B. 2016;94:180402. doi: 10.1103/PhysRevB.94.180402. DOI

Liebermann RC, Banerjee SK. Magnetoelastic interactions in hematite: Implications for geophysics. J. Geophys. Res. 1971;76:2735–2756. doi: 10.1029/JB076i011p02735. DOI

Wang H, et al. Antiferromagnetic anisotropy determination by spin Hall magnetoresistance. J. Appl. Phys. 2017;122:083907. doi: 10.1063/1.4986372. DOI

Barra AL, Gatteschi D, Sessoli R. High-frequency EPR spectra of a molecular nanomagnet: understanding quantum tunneling of the magnetization. Phys. Rev. B. 1997;56:8192–8198. doi: 10.1103/PhysRevB.56.8192. DOI

Lebrun R, et al. Anisotropies and magnetic phase transitions in insulating antiferromagnets determined by a Spin-Hall magnetoresistance probe. Commun. Phys. 2019;2:50. doi: 10.1038/s42005-019-0150-8. DOI

Chou SG, et al. High-resolution terahertz optical absorption study of the antiferromagnetic resonance transition in hematite (α-Fe2O3) J. Phys. Chem. C. 2012;116:16161–16166. doi: 10.1021/jp3036567. DOI

Velikov LV, Rudashevskii EG. Antiferromagnetic resonance in hematite in the weakly ferromagnetic state. Zh. Eksp. Teor. Fiz. 1969;56:1557–1564.

Searle CW, Wang ST. Magnetic‐resonance properties of pure and titanium-doped hematite. J. Appl. Phys. 1968;39:1025–1026. doi: 10.1063/1.1656155. DOI

Fink HJ. Resonance line shapes of weak ferromagnets of the α-Fe2O3 and NiF2 type. Phys. Rev. 1964;133:1322–1326. doi: 10.1103/PhysRev.133.A1322. DOI

Gomonay O, Yamamoto K, Sinova J. Spin caloric effects in antiferromagnets assisted by an external spin current. J. Phys. Appl. Phys. 2018;51:264004. doi: 10.1088/1361-6463/aac56b. DOI

Kovalev AA, Tserkovnyak Y. Thermomagnonic spin transfer and Peltier effects in insulating magnets. EPL Europhys. Lett. 2012;97:67002. doi: 10.1209/0295-5075/97/67002. DOI

Gomonay O, Loktev V. Spin torque antiferromagnetic nanooscillator in the presence of magnetic noise. Condens. Matter Phys. 2012;15:43703. doi: 10.5488/CMP.15.43703. DOI

Tatara G, Pauyac CO. Theory of spin transport through an antiferromagnetic insulator. Phys. Rev. B. 2019;99:180405. doi: 10.1103/PhysRevB.99.180405. DOI

J. Han et al. Birefringence-like spin transport via linearly polarized antiferromagnetic magnons. Nature Nano.15, 563–568 (2020). PubMed

Fischer J, et al. Large spin Hall magnetoresistance in antiferromagnetic α−Fe 2 O 3/Pt Heterostructures. Phys. Rev. Appl. 2020;13:014019. doi: 10.1103/PhysRevApplied.13.014019. DOI

Duncan JA, Storey BE, Tooke AO, Cracknell AP. Magnetostatic modes observed in thin single-crystal films of yttrium iron garnet at Q-band frequencies. J. Phys. C. Solid State Phys. 1980;13:2079–2095. doi: 10.1088/0022-3719/13/10/028. DOI

Beeman DE. Magnetostatic modes in antiferromagnets and canted antiferromagnets. J. Appl. Phys. 1966;37:1136–1137. doi: 10.1063/1.1708368. DOI

Martin TP, Merlin R, Huffman DR, Cardona M. Resonant two magnon Raman scattering in α-Fe2O3. Solid State Commun. 1977;22:565–567. doi: 10.1016/0038-1098(77)90137-5. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...