Long-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet α-Fe2O3
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
33303758
PubMed Central
PMC7729397
DOI
10.1038/s41467-020-20155-7
PII: 10.1038/s41467-020-20155-7
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Antiferromagnetic materials can host spin-waves with polarizations ranging from circular to linear depending on their magnetic anisotropies. Until now, only easy-axis anisotropy antiferromagnets with circularly polarized spin-waves were reported to carry spin-information over long distances of micrometers. In this article, we report long-distance spin-transport in the easy-plane canted antiferromagnetic phase of hematite and at room temperature, where the linearly polarized magnons are not intuitively expected to carry spin. We demonstrate that the spin-transport signal decreases continuously through the easy-axis to easy-plane Morin transition, and persists in the easy-plane phase through current induced pairs of linearly polarized magnons with dephasing lengths in the micrometer range. We explain the long transport distance as a result of the low magnetic damping, which we measure to be ≤ 10-5 as in the best ferromagnets. All of this together demonstrates that long-distance transport can be achieved across a range of anisotropies and temperatures, up to room temperature, highlighting the promising potential of this insulating antiferromagnet for magnon-based devices.
Graduate School of Excellence Materials Science in Mainz Staudingerweg 9 55128 Mainz Germany
Institut für Physik Johannes Gutenberg Universität Mainz 55099 Mainz Germany
Institute of Physics ASCR v v i Cukrovarnicka 10 162 53 Praha Czech Republic
Laboratoire National des Champs Magnétiques Intenses CNRS UGA UPS INSA EMFL 38042 Grenoble France
Unité Mixte de Physique CNRS Thales Université Paris Saclay 91767 Palaiseau France
Univ Grenoble Alpes CNRS CEA Grenoble INP SPINTEC 38000 Grenoble France
See more in PubMed
Hutchings MT, Samuelsen EJ. Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties. Phys. Rev. B. 1972;6:3447–3461. doi: 10.1103/PhysRevB.6.3447. DOI
Samuelsen EJ, Shirane G. Inelastic neutron scattering investigation of spin waves and magnetic interactions in α-Fe2O3. Phys. Status Solidi B. 1970;42:241–256. doi: 10.1002/pssb.19700420125. DOI
Baltz V, et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018;90:015005. doi: 10.1103/RevModPhys.90.015005. DOI
Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016;11:231–241. doi: 10.1038/nnano.2016.18. PubMed DOI
Rezende SM, Azevedo A, Rodríguez-Suárez RL. Introduction to antiferromagnetic magnons. J. Appl. Phys. 2019;126:151101. doi: 10.1063/1.5109132. DOI
Mook A, Göbel B, Henk J, Mertig I. Magnon transport in noncollinear spin textures: anisotropies and topological magnon Hall effects. Phys. Rev. B. 2017;95:020401. doi: 10.1103/PhysRevB.95.020401. DOI
Tveten EG, Qaiumzadeh A, Brataas A. Antiferromagnetic domain wall motion induced by spin waves. Phys. Rev. Lett. 2014;112:147204. doi: 10.1103/PhysRevLett.112.147204. PubMed DOI
Ross A, et al. Propagation length of antiferromagnetic magnons governed by domain configurations. Nano Lett. 2020;20:306–313. doi: 10.1021/acs.nanolett.9b03837. PubMed DOI
Bender SA, Skarsvåg H, Brataas A, Duine RA. Enhanced spin conductance of a thin-film insulating antiferromagnet. Phys. Rev. Lett. 2017;119:056804. doi: 10.1103/PhysRevLett.119.056804. PubMed DOI
Rezende SM, Rodríguez-Suárez RL, Azevedo A. Diffusive magnonic spin transport in antiferromagnetic insulators. Phys. Rev. B. 2016;93:054412. doi: 10.1103/PhysRevB.93.054412. DOI
Takei S, Halperin BI, Yacoby A, Tserkovnyak Y. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B. 2014;90:094408. doi: 10.1103/PhysRevB.90.094408. PubMed DOI
Qaiumzadeh A, Skarsvåg H, Holmqvist C, Brataas A. Spin superfluidity in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 2017;118:137201. doi: 10.1103/PhysRevLett.118.137201. PubMed DOI
Cheng R, Xiao J, Niu Q, Brataas A. Spin pumping and spin-transfer torques in antiferromagnets. Phys. Rev. Lett. 2014;113:057601. doi: 10.1103/PhysRevLett.113.057601. PubMed DOI
Johansen Ø, Brataas A. Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets. Phys. Rev. B. 2017;95:220408. doi: 10.1103/PhysRevB.95.220408. DOI
Li J, et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature. 2020;578:70–74. doi: 10.1038/s41586-020-1950-4. PubMed DOI
Lebrun R, et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature. 2018;561:222. doi: 10.1038/s41586-018-0490-7. PubMed DOI PMC
Stepanov P, et al. Long-distance spin transport through a graphene quantum Hall antiferromagnet. Nat. Phys. 2018;14:967. doi: 10.1038/s41567-018-0237-2. DOI
Yuan W, et al. Experimental signatures of spin superfluid ground state in canted antiferromagnet Cr2O3 via nonlocal spin transport. Sci. Adv. 2018;4:eaat1098. doi: 10.1126/sciadv.aat1098. PubMed DOI PMC
Artman JO, Murphy JC, Foner S. Magnetic anisotropy in antiferromagnetic corundum-type sesquioxides. Phys. Rev. 1965;138:A912–A917. doi: 10.1103/PhysRev.138.A912. DOI
Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960;120:91–98. doi: 10.1103/PhysRev.120.91. DOI
Ellis DS, et al. Magnetic states at the surface of alpha-Fe2O3 thin films doped with Ti, Zn, or Sn. Phys. Rev. B. 2017;96:094426. doi: 10.1103/PhysRevB.96.094426. DOI
Elliston PR, Troup GJ. Some antiferromagnetic resonance measurements in α-Fe2O3. J. Phys. C. Solid State Phys. 1968;1:169. doi: 10.1088/0022-3719/1/1/320. DOI
Cornelissen LJ, Shan J, van Wees BJ. Temperature dependence of the magnon spin diffusion length and magnon spin conductivity in the magnetic insulator yttrium iron garnet. Phys. Rev. B. 2016;94:180402. doi: 10.1103/PhysRevB.94.180402. DOI
Liebermann RC, Banerjee SK. Magnetoelastic interactions in hematite: Implications for geophysics. J. Geophys. Res. 1971;76:2735–2756. doi: 10.1029/JB076i011p02735. DOI
Wang H, et al. Antiferromagnetic anisotropy determination by spin Hall magnetoresistance. J. Appl. Phys. 2017;122:083907. doi: 10.1063/1.4986372. DOI
Barra AL, Gatteschi D, Sessoli R. High-frequency EPR spectra of a molecular nanomagnet: understanding quantum tunneling of the magnetization. Phys. Rev. B. 1997;56:8192–8198. doi: 10.1103/PhysRevB.56.8192. DOI
Lebrun R, et al. Anisotropies and magnetic phase transitions in insulating antiferromagnets determined by a Spin-Hall magnetoresistance probe. Commun. Phys. 2019;2:50. doi: 10.1038/s42005-019-0150-8. DOI
Chou SG, et al. High-resolution terahertz optical absorption study of the antiferromagnetic resonance transition in hematite (α-Fe2O3) J. Phys. Chem. C. 2012;116:16161–16166. doi: 10.1021/jp3036567. DOI
Velikov LV, Rudashevskii EG. Antiferromagnetic resonance in hematite in the weakly ferromagnetic state. Zh. Eksp. Teor. Fiz. 1969;56:1557–1564.
Searle CW, Wang ST. Magnetic‐resonance properties of pure and titanium-doped hematite. J. Appl. Phys. 1968;39:1025–1026. doi: 10.1063/1.1656155. DOI
Fink HJ. Resonance line shapes of weak ferromagnets of the α-Fe2O3 and NiF2 type. Phys. Rev. 1964;133:1322–1326. doi: 10.1103/PhysRev.133.A1322. DOI
Gomonay O, Yamamoto K, Sinova J. Spin caloric effects in antiferromagnets assisted by an external spin current. J. Phys. Appl. Phys. 2018;51:264004. doi: 10.1088/1361-6463/aac56b. DOI
Kovalev AA, Tserkovnyak Y. Thermomagnonic spin transfer and Peltier effects in insulating magnets. EPL Europhys. Lett. 2012;97:67002. doi: 10.1209/0295-5075/97/67002. DOI
Gomonay O, Loktev V. Spin torque antiferromagnetic nanooscillator in the presence of magnetic noise. Condens. Matter Phys. 2012;15:43703. doi: 10.5488/CMP.15.43703. DOI
Tatara G, Pauyac CO. Theory of spin transport through an antiferromagnetic insulator. Phys. Rev. B. 2019;99:180405. doi: 10.1103/PhysRevB.99.180405. DOI
J. Han et al. Birefringence-like spin transport via linearly polarized antiferromagnetic magnons. Nature Nano.15, 563–568 (2020). PubMed
Fischer J, et al. Large spin Hall magnetoresistance in antiferromagnetic α−Fe 2 O 3/Pt Heterostructures. Phys. Rev. Appl. 2020;13:014019. doi: 10.1103/PhysRevApplied.13.014019. DOI
Duncan JA, Storey BE, Tooke AO, Cracknell AP. Magnetostatic modes observed in thin single-crystal films of yttrium iron garnet at Q-band frequencies. J. Phys. C. Solid State Phys. 1980;13:2079–2095. doi: 10.1088/0022-3719/13/10/028. DOI
Beeman DE. Magnetostatic modes in antiferromagnets and canted antiferromagnets. J. Appl. Phys. 1966;37:1136–1137. doi: 10.1063/1.1708368. DOI
Martin TP, Merlin R, Huffman DR, Cardona M. Resonant two magnon Raman scattering in α-Fe2O3. Solid State Commun. 1977;22:565–567. doi: 10.1016/0038-1098(77)90137-5. DOI