Kinetic Target-Guided Synthesis of Small-Molecule G-Quadruplex Stabilizers
Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33304739
PubMed Central
PMC7713561
DOI
10.1002/open.202000261
Knihovny.cz E-zdroje
- Klíčová slova
- G-quadruplex, NMR, anticancer therapy, click chemistry, secondary structures,
- MeSH
- aniliny chemická syntéza chemie farmakologie MeSH
- click chemie MeSH
- G-kvadruplexy účinky léků MeSH
- geny myc genetika MeSH
- kinetika MeSH
- ligandy MeSH
- simulace molekulární dynamiky MeSH
- techniky syntetické chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aniline MeSH Prohlížeč
- aniliny MeSH
- ligandy MeSH
The formation of a G-quadruplex motif in the promoter region of the c-MYC protooncogene prevents its expression. Accordingly, G-quadruplex stabilization by a suitable ligand may be a viable approach for anticancer therapy. In our study, we used the 4-(4-methylpiperazin-1-yl)aniline molecule, previously identified as a fragment library screen hit, as a template for the SAR-guided design of a new small library of clickable fragments and subjected them to click reactions, including kinetic target-guided synthesis in the presence of a G-quadruplex forming oligonucleotide Pu24. We tested the clickable fragments and products of click reactions for their G-quadruplex stabilizing activity and determined their mode of binding to the c-MYC G-quadruplex by NMR spectroscopy. The enhanced stabilizing potency of click products in biology assays (FRET, Polymerase extension assay) matched the increased yields of in situ click reactions. In conclusion, we identified the newly synthesized click products of bis-amino derivatives of 4-(4-methylpiperazin-1-yl)aniline as potent stabilizers of c-MYC G-quadruplex, and their further evolution may lead to the development of an efficient tool for cancer treatment.
Department of Cell Biology Charles University Prague Czech Republic
Department of Organic Chemistry Charles University Prague Czech Republic
NMR laboratory University of Chemistry and Technology Prague Czech Republic
Zobrazit více v PubMed
Neidle S., J. Med. Chem. 2016, 59, 5987–6001. PubMed
Chaires J. B., Graves D., Quadruplex nucleic acids, SPRINGER, 2013.
Campbell N., Collie G. W., Neidle S., Curr. Protoc. Nucleic Acid Chem. 2012, 50, 176.11-17.6.22. PubMed
Balasubramanian S., Hurley L. H., Neidle S., Nat. Rev. Drug Discovery 2011, 10, 261–275. PubMed PMC
Siddiqui-Jain A., Grand C. L., Bearss D. J., Hurley L. H., PNAS 2002, 99, 11593–11598. PubMed PMC
Tansey W. P., New J. Sci. 2014, 2014, 27.
Meyer N., Penn L. Z., Nat. Rev. Cancer 2008, 8, 976–990. PubMed
Lin C. Y., Lovén J., Rahl P. B., Paranal R. M., Burge C. B., Bradner J. E., Lee T. I., Young R. A., Cell 2012, 151, 56–67. PubMed PMC
Brooks T. A., Hurley L. H., Nat. Rev. Cancer 2009, 9, 849–861. PubMed
Yang D., Hurley L. H., Nucleos. Nucleot. Nucl. 2006, 25, 951–968. PubMed
Bochman M. L., Paeschke K., Zakian V. A., Nat. Rev. Genet. 2012, 13, 770–780. PubMed PMC
Qin Y., Hurley L. H., Biochimie 2008, 90, 1149–1171. PubMed PMC
Phan A. T., Kuryavyi V., Gaw H. Y., Patel D. J., Nat. Chem. Biol. 2005, 1, 167–173. PubMed PMC
Seenisamy J., Rezler E. M., Powell T. J., Tye D., Gokhale V., Joshi C. S., Siddiqui-Jain A., Hurley L. H., J. Am. Chem. Soc. 2004, 126, 8702–8709. PubMed
Ambrus A., Chen D., Dai J., Jones R. A., Yang D., Biochemistry 2005, 44, 2048–2058. PubMed
Monchaud D., Telaude-Fichou M.-P., Org. Biomol. Chem. 2008, 6, 627–636. PubMed
Chen B.-J., Wu Y.-L., Tanaka Y., Zhang W., Int. J. Biol. Sci. 2014, 10, 1084–1096. PubMed PMC
Maiti S., Chaudhury N. K., Chowdhury S., Biochem. Biophys. Res. Commun. 2003, 310, 505–512. PubMed
Ou T.-M., Lu Y.-J., Zhang C., Huang Z.-S., Wang X.-D., Tan J.-H., Chen Y., Ma D.-L., Wong K.-Y., Tang J. C.-O., Chan A. S.-C., Gu L.-Q., J. Med. Chem. 2007, 50, 1465–1474. PubMed
Lu Y.-J., Ou T.-M., Tan J.-H., Hou J.-Q., Shao W.-Y., Peng D., Sun N., Wang X.-D., Wu W.-B., Bu X.-Z., Huang Z.-S., Ma D.-L., Wong K.-Y., Gu L. Q., J. Med. Chem. 2008, 51, 6381–6392. PubMed
Ma Y., Ou T.-M., Hou J.-Q., Lu Y.-J., Tan J.-H., Gu L.-Q., Huang Z.-S., Bioorg. Med. Chem. 2008, 16, 7582–7591. PubMed
Dumat B., Bordeau G., Faurel-Paul E., Mahuteau-Betzer F., Saettel N., Bombled M., Metgé G., Charra F., Fiorini-Debuisschert C., Teulade-Fichou M.-P., Biochimie 2011, 93, 1209–1218. PubMed
Rangan A., Fedoroff O. Y., Hurley L. H., J. Biol. Chem. 2001, 276, 4640–4646. PubMed
Ma D.-L., Ma V. P.-Y., Leung K.-H., Zhong H.-J., He H.-Z., Chan D. S.-H., Leung C.-H., Structure-Based Approaches Targeting Oncogene promoter G-Quadruplexes, InTech, 2013.
Duan W., Rangan A., Vankayalapati H., Kim M.-Y., Zeng Q., Sun D., Han H., Fedoroff O. Y., Nishioka D., Rha S. Y., Izbicka E., Von Hoff D. D., Hurley L. H., Mol. Cancer Ther. 2001, 1, 103–120. PubMed
Mo H., Vita M., Crespin M., Arsenian Henriksson M., Cell Cycle 2006, 5, 2191–2194. PubMed
Jiang Y., Chen A.-C., Kuang G.-T., Wang S.-K., Ou T.-M., Tan J.-H., Li D., Huang Z.-S., Eur. J. Med. Chem. 2016, 122, 264–279. PubMed
Dutta D., Debnath M., Müller D., Paul R., Das T., Bessi I., Schwalbe H., Dash J., Nucleic Acids Res. 2018, 46, 5355–5365. PubMed PMC
Pelliccia S., Amato J., Capasso D., Di Gaetano S., Massarotti A., Piccolo M., Irace C., Tron G. C., Pagano B., Randazzo A., Novellino E., Giustiniano M., J. Med. Chem. 2020, 63, 2035–2050. PubMed
Chauhan A., Paul R., Debnath M., Bessi I., Mandal S., Schwalbe H., Dash J., J. Med. Chem. 2016, 59, 7275–7281. PubMed
Lewis W. G., Green L. G., Grynszpan F., Radić Z., Carlier P. R., Taylor P., Finn M. G., Sharpless K. B., Angew. Chem. Int. Ed. Engl. 2002, 41, 1053–1057. PubMed
Whiting M., Muldoon J., Lin Y.-C., Silverman S. M., Lindstrom W., Olson A. J., Kolb H. C., Finn M. G., Sharpless K. B., Elder J. H., Fokin V. V., Angew. Chem. Int. Ed. 2006, 45, 1435–1439; PubMed
Angew. Chem. 2006, 118, 1463–1467.
Hu X., Manetsch R., Chem. Soc. Rev. 2010, 39, 1316–1324. PubMed
Mamidyala S. K., Finn M. G., Chem. Soc. Rev. 2010, 39, 1252–1261. PubMed
Grimster N. P., Stump B., Fotsing J. R., Weide T., Talley T. T., Yamauchi J. G., Nemecz Á., Kim C., Ho K.-Y., Sharpless K. B., Taylor P., Fokin V. V., J. Am. Chem. Soc. 2012, 134, 6732–6740. PubMed PMC
Glassford I., Teijaro C. N., Daher S. S., Weil A., Small M. C., Redhu S. K., Colussi D. J., Jacobson M. A., Childers W. E., Buttaro B., Nicholson A. W., MacKerell A. D., Cooperman B. S., Andrade R. B., J. Am. Chem. Soc. 2016, 138, 3136–3144. PubMed PMC
Bosc D., Jakhlal J., Deprez B., Deprez-Poulain R., Future Med. Chem. 2016, 8, 381–404. PubMed
Di Antonio M., Biffi G., Mariani A., Raiber E.-A., Rodriguez R., Balasubramanian S., Angew. Chem. Int. Ed. 2012, 51, 11073–11078; PubMed PMC
Angew. Chem. 2012, 124, 11235–11240.
Hu M.-H., Chen X., Chen S.-B., Ou T.-M., Yao M., Gu L.-Q., Huang Z.-S., Tan J.-H., Sci. Rep. 2015, 5, 17202. PubMed PMC
Panda D., Saha P., Das T., Dash J., Nat. Commun. 2017, 8, 16103. PubMed PMC
Thirumurugan P., Matosiuk D., Jozwiak K., Chem. Rev. 2013, 113, 4905–4979. PubMed
Nasiri H. R., Bell N. M., McLuckie K. I. E., Husby J., Abell C., Neidle S., Balasubramanian S., Chem. Commun. 2014, 50, 1704–1707. PubMed
Latt S. A., Stetten G., J. Histochem. Cytochem. 1976, 24, 24–33. PubMed
Pjura P. E., Grzeskowiak K., Dickerson R. E., J. Mol. Biol. 1987, 197, 257–271. PubMed
Risseeuw M. D. P., De Clercq D. J. H., Lievens S., Hillaert U., Sinnaeve D., Van den Broeck F., Martins J. C., Tavernier J., Van Calenbergh S., ChemMedChem 2013, 8, 521–526. PubMed PMC
de la Fuente T., Martín-Fontecha M., Sallander J., Benhamú B., Campillo M., Medina R. A., Pellissier L. P., Claeysen S., Dumuis A., Pardo L., López-Rodríguez M. L., J. Med. Chem. 2010, 53, 1357–1369. PubMed
Balasubramanian S., Neidle S., Curr. Opin. Chem. Biol. 2009, 13, 345–353. PubMed PMC
Duarte A. R., Cadoni E., Ressurreicao A. S., Moreira R., Paulo A., ChemMedChem. 2018, 13, 869–893. PubMed
Kumar Y. P., Saha P., Saha D., Bessi I., Schwalbe H., Chowdhury S., Dash J., ChemBioChem. 2016, 17, 388–393. PubMed
Ranjan N., Arya D. P., Molecules 2013, 18, 14228–14240. PubMed PMC
Yu L., Yang Q., Xiang J., Sun H., Wang L., Li Q., Guan A., Tang Y., Analyst 2015, 140, 1637–1646. PubMed
Anselmet A., Mayat E., Wietek S., Layer P. G., Payrastre B., Massoulié J., FEBS Lett. 2002, 510, 175–180. PubMed
Galeone A., ChemBioChem 2010, 11, 2050–2051.
E. Hryhorenko, B. Sankaran, T. R. DeCory, T. Tubbs, L. Colt, B. M. Remmerie, R. Salter, M. G. Donahue, Y. Gong, US 2014/0057303 A1 (27. 02. 2014).
Ramachandran S., Hameed S., Srivastava P. A., Shanbhag G., Morayya S., Rautela N., Awasthy D., Kavanagh S., Bharath S., Reddy J., Panduga V., Prabhakar K. R., Saralaya R., Nanduri R., Raichurkar A., Menasinakai S., Achar V., Jimenéz-Díaz M. B., Santos Martínez M., Angulo-Barturen I., Ferrer S., Sanz L. M., Gamo F. J., Duffy S., Avery V. M., Waterson D., Lee M. C. S., Coburn-Flynn O., Fidock D. A., Iyer P. S., Narayanan S., Hosagrahara V., Sambandamurthy V. K., J. Med. Chem. 2014, 57, 6642–6652. PubMed
Mayer M., Meyer B., Angew. Chem. Int. Ed. 1999, 38, 1784–1788; PubMed
Angew. Chem. 1999, 111, 1902–1906.
Hwang T.-L., Shaka A. J., J. Magn. Reson. Ser. A 1995, 112, 275–279.