A global analysis of song frequency in passerines provides no support for the acoustic adaptation hypothesis but suggests a role for sexual selection
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu dopisy
Grantová podpora
17-24782S
Czech Science Foundation
Max Planck Society
PubMed
33314573
DOI
10.1111/ele.13662
Knihovny.cz E-zdroje
- Klíčová slova
- Acoustic adaptation hypothesis, allometry, animal communication, bird song, macroecology, morphological constraints, sexual selection,
- MeSH
- akustika MeSH
- biologická evoluce MeSH
- Passeriformes * MeSH
- pohlavní výběr MeSH
- vokalizace zvířat * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- dopisy MeSH
Animals use acoustic signals for communication, implying that the properties of these signals can be under strong selection. The acoustic adaptation hypothesis predicts that species in dense habitats emit lower-frequency sounds than those in open areas because low-frequency sounds propagate further in dense vegetation than high-frequency sounds. Signal frequency may also be under sexual selection because it correlates with body size and lower-frequency sounds are perceived as more intimidating. Here, we evaluate these hypotheses by analysing variation in peak song frequency across 5,085 passerine species (Passeriformes). A phylogenetically informed analysis revealed that song frequency decreases with increasing body mass and with male-biased sexual size dimorphism. However, we found no support for the predicted relationship between frequency and habitat. Our results suggest that the global variation in passerine song frequency is mostly driven by natural and sexual selection causing evolutionary shifts in body size rather than by habitat-related selection on sound propagation.
Department of Ecology Faculty of Science Charles University Viničná 7 Praha 12843 Czech Republic
Department of Zoology Faculty of Science Charles University Viničná 7 Praha 12844 Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 Brno 603 65 Czech Republic
Zobrazit více v PubMed
Apicella, C.L., Feinberg, D.R. & Marlowe, F.W. (2007). Voice pitch predicts reproductive success in male hunter-gatherers. Biol. Lett., 3, 682-684.
Baken, R.J. (1987). Clinical measurement of speech and voice. Taylor and Francis Ltd., London.
Baston, D. (2020). exactextractr: Fast extraction from raster datasets using polygons. R Packag. version 0.2.1. Available at: https://cran.r-project.org/package=exactextractr.
Bertelli, S. & Tubaro, P.L. (2002). Body mass and habitat correlates of song structure in a primitive group of birds. Biol. J. Linn. Soc., 77, 423-430.
BirdLife International and NatureServe (2018). Bird species distribution maps of the world. Available at: http://datazone.birdlife.org/
Björklund, M. (1990). A phylogenetic interpretation of sexual dimorphism in body size and ornament in relation to mating system in birds. J. Evol. Biol., 3, 171-183.
Blumstein, D.T. & Turner, A.C. (2005). Can the acoustic adaptation hypothesis predict the structure of Australian birdsong? Acta Ethol., 8, 35-44.
Boncoraglio, G. & Saino, N. (2007). Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Funct. Ecol., 21, 134-142.
Bradbury, J.W. & Vehrencamp, S.L. (1998). Principles of animal communication. Sinauer Associates, Sunderland.
Briefer, E., Vannoni, E. & McElligott, A.G. (2010). Quality prevails over identity in the sexually selected vocalisations of an ageing mammal. BMC Biol., 8, 1-15.
Bro-Jørgensen, J. & Beeston, J. (2015). Multimodal signalling in an antelope: fluctuating facemasks and knee-clicks reveal the social status of eland bulls. Anim. Behav., 102, 231-239.
Brumm, H. & Goymann, W. (2017). On the natural history of duetting in white-browed coucals: sex- and body-size-dependent differences in a collective vocal display. J. Ornithol., 158, 669-678.
Brumm, H. & Naguib, M. (2009). Environmental acoustics and the evolution of bird song. Adv. Study Behav., 40, 1-33.
Brumm, H. & Zollinger, S.A. (2013). Avian vocal production in noise. In Animal signals and communication (ed Brumm, H.). Springer, Berlin, Heidelberg, pp. 187-227.
Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L. & Smets, B. (2020). Copernicus global land cover layers-collection 2. Remote Sens., 12, 1044.
Buskirk, J.V. (1997). Independent evolution of song structure and note structure in American wood warblers. Proc. R. Soc. B Biol. Sci., 264, 755-761.
Catchpole, C.K. (1987). Bird song, sexual selection and female choice. Trends Ecol. Evol., 2, 94-97.
Catchpole, C.K. & Slater, P.J.B. (2008). Bird song: biological themes and variations. Cambridge University Press, Cambridge.
Charlton, B.D., Reby, D. & McComb, K. (2007). Female red deer prefer the roars of larger males. Biol. Lett., 3, 382-385.
Christie, P.J., Mennill, D.J. & Ratcliffe, L.M. (2004). Pitch shifts and song structure indicate male quality in the dawn chorus of black-capped chickadees. Behav. Ecol. Sociobiol., 55, 341-348.
Dale, J., Dunn, P.O., Figuerola, J., Lislevand, T., Székely, T. & Whittingham, L.A. (2007). Sexual selection explains Rensch’s rule of allometry for sexual size dimorphism. Proc. R. Soc. B Biol. Sci., 274, 2971-2979.
Davies, N.B. & Halliday, T.R. (1978). Deep croaks and fighting assessment in toads Bufo bufo. Nature, 274, 683-685.
Dunn, P.O., Whittingham, L.A. & Pitcher, T.E. (2001). Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution, 55, 161-175.
Dunning, J.B. (2008). CRC handbook of avian body masses. CRC Press, Boca Raton.
Ey, E. & Fischer, J. (2009). The “acoustic adaptation hypothesis” - a review of the evidence from birds, anurans and mammals. Bioacoustics, 19, 21-48.
Fairbairn, D.J. (1997). Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annu. Rev. Ecol. Syst., 28, 659-687.
Feng, A.S., Narins, P.M., Xu, C.H., Lin, W.Y., Yu, Z.L., Qiu, Q. et al. (2006). Ultrasonic communication in frogs. Nature, 440, 333-336.
Fischer, J., Kitchen, D.M., Seyfarth, R.M. & Cheney, D.L. (2004). Baboon loud calls advertise male quality: acoustic features and their relation to rank, age, and exhaustion. Behav. Ecol. Sociobiol., 56, 140-148.
Fitch, T.W. (2006). Production of vocalizations in mammals. Vis. Commun., 3, 115-121.
Fitch, W.T. & Hauser, M.D. (2002). Unpacking “honesty”: vertebrate vocal production and the evolution of acoustic signals. In Acoustic communication (eds Simmons, A.M., Fay, R.R., Popper, A.N.). Springer, New York, pp. 65-137.
Forstmeier, W., Burger, C., Temnow, K. & Derégnaucourt, S. (2009). The genetic basis of zebra finch vocalizations. Evolution, 63, 2114-2130.
Freckleton, R.P., Harvey, P.H. & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat., 160, 712-726.
Geberzahn, N. & Aubin, T. (2014). How a songbird with a continuous singing style modulates its song when territorially challenged. Behav. Ecol. Sociobiol., 68, 1-12.
Gerhardt, H.C. (1994). The evolution of vocalization in frogs and toads. Annu. Rev. Ecol. Syst., 25, 293-324.
Gerhardt, H.C. & Huber, F. (2002). Acoustic communication in insects and anurans: common problems and diverse solutions, 2nd edn. The University of Chicago Press, Chicago.
Gillooly, J.F. & Ophir, A.G. (2010). The energetic basis of acoustic communication. Proc. R. Soc. B Biol. Sci., 277, 1325-1331.
Gonzalez-Voyer, A., den Tex, R.-J., Castelló, A. & Leonard, J.A. (2013). Evolution of acoustic and visual signals in Asian barbets. J. Evol. Biol., 26, 647-659.
Goolsby, E.W., Bruggeman, J. & Ané, C. (2017). Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol., 8, 22-27.
Greig, E.I., Price, J.J. & Pruett-Jones, S. (2013). Song evolution in Maluridae: influences of natural and sexual selection on acoustic structure. Emu, 113, 270-281.
Hall, M.L., Kingma, S.A. & Peters, A. (2013). Male songbird indicates body size with low-pitched advertising songs. PLoS One, 8, e56717.
Hardouin, L.A., Reby, D., Bavoux, C., Burneleau, G. & Bretagnolle, V. (2007). Communication of male quality in owl hoots. Am. Nat., 169, 552-562.
del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (2018). Handbook of the birds of the world Alive. Available at: http://www.hbw.com/
Ives, A.R. (2019). R2s for correlated data: phylogenetic models, LMMs, and GLMMs. Syst. Biol., 68, 234-251.
Ives, A.R. & Li, D. (2018). rr2: an R package to calculate R2s for regression models. J. Open Source Softw., 3, 1028.
Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. (2012). The global diversity of birds in space and time. Nature, 491, 444-448.
Kirschel, A.N.G., Blumstein, D.T., Cohen, R.E., Buermann, W., Smith, T.B. & Slabbekoorn, H. (2009). Birdsong tuned to the environment: green hylia song varies with elevation, tree cover, and noise. Behav. Ecol., 20, 1089-1095.
Kirschel, A.N.G., Zanti, Z., Harlow, Z.T., Vallejo, E.E., Cody, M.L. & Taylor, C.E. (2020). Females don’t always sing in response to male song, but when they do, they sing to males with higher-pitched songs. Anim. Behav., 166, 129-138.
Krüger, O. (2005). The evolution of reversed sexual size dimorphism in hawks, falcons and owls: A comparative study. Evol. Ecol., 19, 467-486.
Linhart, P. & Fuchs, R. (2015). Song pitch indicates body size and correlates with males’ response to playback in a songbird. Anim. Behav., 103, 91-98.
Marten, K. & Marler, P. (1977). Sound transmission and its significance for animal vocalization. I. Temperate habitats. Behav. Ecol. Sociobiol., 2, 271-290.
Mason, N.A. & Burns, K.J. (2015). The effect of habitat and body size on the evolution of vocal displays in Thraupidae (tanagers), the largest family of songbirds. Biol. J. Linn. Soc., 114, 538-551.
Mason, N.A., Shultz, A.J. & Burns, K.J. (2014). Elaborate visual and acoustic signals evolve independently in a large, phenotypically diverse radiation of songbirds. Proc. R. Soc. B Biol. Sci., 281, 20140967.
McClatchie, S., Alsop, J. & Coombs, R.F. (1996). A re-evaluation of relationships between fish size, acoustic frequency, and target strength. ICES J. Mar. Sci., 53, 780-791.
Mikula, P., Tószögyová, A., Hořák, D., Petrusková, T., Storch, D. & Albrecht, T. (2020a). Female solo song and duetting are associated with different territoriality in songbirds. Behav. Ecol., 31, 322-329.
Mikula, P., Valcu, V., Brumm, H., Bulla, H., Forstmeier, W., Petrusková, T. et al. (2020b). Supporting information for “A global analysis of song frequency in passerines provides no support for the acoustic adaptation hypothesis but suggests a role for sexual selection”. Open Sci. Framew. https://doi.org/10.17605/OSF.IO/FA9KY.
Morris, M.R. & Yoon, S.L. (1989). A mechanism for female choice of large males in the treefrog Hyla chrysoscelis. Behav. Ecol. Sociobiol., 25, 65-71.
Morton, E.S. (1975). Ecological sources of selection on avian sounds. Am. Nat., 109, 17-34.
Nakagawa, S. & Freckleton, R.P. (2008). Missing inaction: the dangers of ignoring missing data. Trends Ecol. Evol., 23(11), 592-596.
Odom, K.J., Hall, M.L., Riebel, K., Omland, K.E. & Langmore, N.E. (2014). Female song is widespread and ancestral in songbirds. Nat. Commun., 5, 3379.
Ophir, A.G., Schrader, S.B. & Gillooly, J.F. (2010). Energetic cost of calling: general constraints and species-specific differences. J. Evol. Biol., 23, 1564-1569.
Padgham, M. (2004). Reverberation and frequency attenuation in forests - implications for acoustic communication in animals. J. Acoust. Soc. Am., 115, 402-410.
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877-884.
Paradis, E. (2011). Analysis of phylogenetics and evolution with R. Springer, Berlin.
Pearse, W.D., Morales-Castilla, I., James, L.S., Farrell, M., Boivin, F. & Davies, T.J. (2018). Global macroevolution and macroecology of passerine song. Evolution, 72, 944-960.
Penone, C., Davidson, A.D., Shoemaker, K.T., Di Marco, M., Rondinini, C., Brooks, T.M. et al. (2014). Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol., 5, 961-970.
Pijanowski, B.C., Villanueva-Rivera, L.J., Dumyahn, S.L., Farina, A., Krause, B.L., Napoletano, B.M. et al. (2011). Soundscape ecology: The science of sound in the landscape. Bioscience, 61, 203-216.
Podos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature, 409, 185-188.
Price, J.J., Earnshaw, S.M. & Webster, M.S. (2006). Montezuma oropendolas modify a component of song constrained by body size during vocal contests. Anim. Behav., 71, 799-807.
R Development Core Team (2019). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Revell, L.J. (2010). Phylogenetic signal and linear regression on species data. Methods Ecol. Evol., 1, 319-329.
Revell, L.J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol., 3, 217-223.
Revell, L.J. (2013). Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol., 4, 754-759.
Ricklefs, R.E. (2010). Insights from comparative analyses of aging in birds and mammals. Aging Cell, 9, 273-284.
Riede, T., Eliason, C.M., Miller, E.H., Goller, F. & Clarke, J.A. (2016). Coos, booms, and hoots: The evolution of closed-mouth vocal behavior in birds. Evolution, 70, 1734-1746.
Riede, T., Forstmeier, W., Kempenaers, B. & Goller, F. (2015). The functional morphology of male courtship displays in the Pectoral Sandpiper (Calidris melanotos). Auk, 132, 65-77.
Rodríguez, R.L., Araya-Salas, M., Gray, D.A., Reichert, M.S., Symes, L.B., Wilkins, M.R. et al. (2015). How acoustic signals scale with individual body size: common trends across diverse taxa. Behav. Ecol., 26, 168-177.
Rothstein, S.I. & Fleischer, R.C. (1987). Vocal dialects and their possible relation to honest status signalling in the brown-headed cowbird. Condor, 89, 1-23.
Ryan, M.J. & Brenowitz, E.A. (1985). The role of body size, phylogeny, and ambient noise in the evolution of bird song. Am. Nat., 126, 87-100.
Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol., 1, 103-113.
Schliep, K.P. (2011). phangorn: phylogenetic analysis in R. Bioinformatics, 27, 592-593.
Searcy, W.A. & Nowicki, S. (2005). The evolution of animal communication: reliability and deception in signaling systems. Princeton University Press, Princeton.
Seddon, N. (2005). Ecological adaptation and species recognition drives vocal evolution in neotropical suboscine birds. Evolution, 59, 200-215.
Seddon, N., Amos, W., Mulder, R.A. & Tobias, J.A. (2004). Male heterozygosity predicts territory size, song structure and reproductive success in a cooperatively breeding bird. Proc. R. Soc. B Biol. Sci., 271, 1823-1829.
Seneviratne, S.S., Jones, I.L. & Carr, S.M. (2012). Patterns of vocal divergence in a group of non-oscine birds (auklets; Alcidae, Charadriiformes). Evol. Ecol. Res., 14, 95-112.
Sick, H. (1954). Zur Biologie des amazonischen schirmvogels, cephalopterus ornatus. J. für Ornithol., 95, 233-244.
Slabbekoorn, H. & Smith, T.B. (2002). Habitat-dependent song divergence in the little greenbul: An analysis of environmental selection pressures on acoustic signals. Evolution, 56, 1849-1858.
Smith, T.B., Harrigan, R.J., Kirschel, A.N.G., Buermann, W., Saatchi, S., Blumstein, D.T. et al. (2013). Predicting bird song from space. Evol. Appl., 6, 865-874.
Suthers, R.A. & Zollinger, S.A. (2008). From brain to song: the vocal organ and vocal tract. In Neuroscience of birdsong (eds Zeigler, P.H. & Marler, P.). Cambridge University Press, Cambridge, pp. 78-98.
Symonds, M.R.E. & Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol., 65, 13-21.
Székely, T., Reynolds, J.D. & Figuerola, J. (2000). Sexual size dimorphism in shorebirds, gulls, and alcids: the influence of sexual and natural selection. Evolution, 54, 1404-1413.
Thiagavel, J., Santana, S.E. & Ratcliffe, J.M. (2017). Body size predicts echolocation call peak frequency better than gape height in vespertilionid bats. Sci. Rep., 7, 1-6.
Tietze, D.T., Martens, J., Fischer, B.S., Sun, Y.-H., Klussmann-Kolb, A. & Päckert, M. (2015). Evolution of leaf warbler songs (Aves: Phylloscopidae). Ecol. Evol., 5, 781-798.
Tobias, J.A., Sheard, C., Seddon, N., Meade, A., Cotton, A.J. & Nakagawa, S. (2016). Territoriality, social bonds, and the evolution of communal signaling in birds. Front. Ecol. Evol., 4, 74.
Trivers, R.L. (1972). Parental investment and sexual selection. In Sexual selection and the descent of man 1871-1971. (ed Campbell, B.). Aldine, Chicago, pp. 136-179.
Tung Ho, L.S. & Ané, C.(2014). A linear-time algorithm for gaussian and non-gaussian trait evolution models. Syst. Biol., 63, 397-408.
Valcu, M., Dale, J. & Kempenaers, B. (2012). rangeMapper: a platform for the study of macroecology of life-history traits. Glob. Ecol. Biogeogr., 21, 945-951.
Vannoni, E. & McElligott, A.G. (2008). Low frequency groans indicate larger and more dominant fallow deer (Dama dama) males. PLoS One, 3, e3113.
Venables, W.N. & Ripley, B.D. (2002). Modern applied statistics with S, 4th edn. Springer, New York.
Wagner, W.E. (1989). Fighting, assessment, and frequency alteration in Blanchard’s cricket frog. Behav. Ecol. Sociobiol., 25, 429-436.
Wagner, W.E., Beckers, O.M., Tolle, A.E. & Basolo, A.L. (2012). Tradeoffs limit the evolution of male traits that are attractive to females. Proc. R. Soc. B Biol. Sci., 279, 2899-2906.
Wallschläger, D. (1980). Correlation of song frequency and body weight in passerine birds. Experientia, 36, 412.
Wiley, H.R. & Richards, D.G. (1982). Adaptations for acoustic communication in birds: sound transmission and signal detection. In Acoustic communication in birds (eds Kroodsma, D.E. & Miller, E.H.). Academic Press, New York, pp. 131-181.
Wiley, R.H. (1991). Associations of song properties with habitats for territorial oscine birds of eastern North America. Am. Nat., 138, 973-993.
Wiley, R.H. & Richards, D.G. (1978). Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behav. Ecol. Sociobiol., 3, 69-94.
Woodward, G., Ebenman, B., Emmerson, M., Montoya, J.M., Olesen, J.M., Valido, A. et al. (2005). Body size in ecological networks. Trends Ecol. Evol., 20, 402-409.
Zollinger, S.A., Podos, J., Nemeth, E., Goller, F. & Brumm, H. (2012). On the relationship between, and measurement of, amplitude and frequency in birdsong. Anim. Behav., 84, e1-e9.
Acoustic variation in alarm calls of Corvidae-effect of morphology, ecology and phylogeny