Influence of Dextran Molecular Weight on the Physical Properties of Magnetic Nanoparticles for Hyperthermia and MRI Applications

. 2020 Dec 09 ; 10 (12) : . [epub] 20201209

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33317168

Grantová podpora
2018/11-UKMT-7 Ministry of Health of the Slovak Republic
ITMS code: 26220220153 Competence Centre Martin
COST CA17115 COST action MyWave
E!9982 EUREKA project E!9982-NANORADIOMAG
VEGA 2/0033/19 National Grant Agency VEGA
APVV SK-SRB-18-0055 APVV
APVV-DS-FR-19-0052 APVV
ITMS 313011T548 project MODEX supported by the Operational Programme Integrated Infrastructure (OPII) funded by the ERDF

Dextran-coated magnetic nanoparticles are promising biocompatible agents in various biomedical applications, including hyperthermia and magnetic resonance imaging (MRI). However, the influence of dextran molecular weight on the physical properties of dextran-coated magnetic nanoparticles has not been described sufficiently. We synthesise magnetite nanoparticles with a dextran coating using a co-precipitation method and study their physical properties as a function of dextran molecular weight. Several different methods are used to determine the size distribution of the particles, including microscopy, dynamic light scattering, differential centrifugal sedimentation and magnetic measurements. The size of the dextran-coated particles increases with increasing dextran molecular weight. We find that the molecular weight of dextran has a significant effect on the particle size, efficiency, magnetic properties and specific absorption rate. Magnetic hyperthermia measurements show that heating is faster for dextran-coated particles with higher molecular weight. The different molecular weights of the coating also significantly affected its MRI relaxation properties, especially the transversal relaxivity r2. Linear regression analysis reveals a statistically significant dependence of r2 on the differential centrifugal sedimentation diameter. This allows the targeted preparation of dextran-coated magnetic nanoparticles with the desired MRI properties. These results will aid the development of functionalised magnetic nanoparticles for hyperthermia and MRI applications.

Zobrazit více v PubMed

Colombo M., Carregal-Romero S., Casula M.F., Gutiérrez L., Morales M.P., Böhm I.B., Heverhagen J.T., Prosperi D., Parak W.J. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 2012;41:4306–4334. doi: 10.1039/c2cs15337h. PubMed DOI

Varanda L.C., Júnior M.J., Júnior W.B. Magnetic and Multifunctional Magnetic Nanoparticles in Nanomedicine: Challenges and Trends in Synthesis and Surface Engineering for Diagnostic and Therapy Applications. In: Laskovski A.N., editor. Biomedical Engineering. IntechOpen; Rijeka, Croatia: 2011.

Kashkooli F.M., Soltani M., Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J. Control. Release. 2020;327:316–349. doi: 10.1016/j.jconrel.2020.08.012. PubMed DOI

Hola K., Markova Z., Zoppellaro G., Tucek J., Zboril R. Tailored functionalisation of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilisation of biosubstances. Biotechnol. Adv. 2015;33:1162–1176. doi: 10.1016/j.biotechadv.2015.02.003. PubMed DOI

Das P., Colombo M., Prosperi D. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf. B Biointerfaces. 2019;174:42–55. doi: 10.1016/j.colsurfb.2018.10.051. PubMed DOI

Liu X., Zhang Y., Wang Y., Zhu W., Li G., Ma X., Zhang Y., Shizu C., Tiwari S., Shi K., et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostic. 2020;10:3793–3815. doi: 10.7150/thno.40805. PubMed DOI PMC

Dutz S., Hergt R. Magnetic particle hyperthermia—A promising tumour therapy? Nanotechnology. 2014;14:452001. doi: 10.1088/0957-4484/25/45/452001. PubMed DOI

Molcan M., Gojzewski H., Skumiel A., Dutz S., Kovac J., Kubovcikova M., Kopcansky P., Vekas L., Timko M. Energy losses in mechanically modified bacterial magnetosomes. J. Phys. D Appl. Phys. 2016;49:365002. doi: 10.1088/0022-3727/49/36/365002. DOI

Ortega D., Pankhurst Q.A. In: Magnetic Hyperthermia, in Nanoscience: Volume 1: Nanostructures through Chemistry. O’Brien P., editor. Royal Society of Chemistry; Cambridge, UK: 2013. pp. 60–88.

Frtus A., Smolkova B., Uzhytchak M., Lunova M., Jirsa M., Kubinova S., Dejneka A., Lunov O. Analysing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. J. Control. Release. 2020;328:59–77. doi: 10.1016/j.jconrel.2020.08.036. PubMed DOI

Lanier O.L., Korotych O.I., Monsalve A.G., Wable D., Savliwala S., Grooms N.W.F., Nacea C., Tuitt O.R., Dobson J. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Inter. J. Hyperth. 2019;36:686–700. doi: 10.1080/02656736.2019.1628313. PubMed DOI

Babic M., Horak D., Molcan M., Timko M. Heat generation of surface-modified magnetic γ-Fe2O3 nanoparticles in applied alternating magnetic field. J. Phys. D Appl. Phys. 2017;50:345002. doi: 10.1088/1361-6463/aa7bcb. DOI

Osaci M., Cacciola M. About the influence of the colloidal magnetic nanoparticles coating on the specific loss power in magnetic hyperthermia. J. Magn. Magn. Mater. 2020;519:167451. doi: 10.1016/j.jmmm.2020.167451. DOI

Shaterabadi Z., Nabiyouni G., Soleymani M. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles. Mater. Sci. Eng. C. 2020;117:111274. doi: 10.1016/j.msec.2020.111274. PubMed DOI

Antal I., Koneracka M., Kubovcikova M., Zavisova V., Khmara I., Lucanska D., Jelenska L., Vidlickova I., Zatovicova M., Pastorekova S., et al. D,L-Lysine functionalised Fe3O4 nanoparticles for detection of cancer cells. Colloids Surf. B Biointerfaces. 2018;1:236–245. doi: 10.1016/j.colsurfb.2017.12.022. PubMed DOI

Kaczmarek K., Hornowski T., Antal I., Timko M., Józefczak A. Magneto-ultrasonic heating with nanoparticles. J. Magn. Magn. Mater. 2019;474:400–405. doi: 10.1016/j.jmmm.2018.11.062. DOI

Bica D., Vekas L., Avdeev M.V., Marinica O., Socoliuc V., Balasoiu M., Garamus V.M. Sterically stabilised water based magnetic fluids: Synthesis, structure and properties. J. Magn. Magn. Mater. 2007;311:17–21. doi: 10.1016/j.jmmm.2006.11.158. DOI

Araújo-Neto R.P., Silva-Freitas E.L., Carvalho J.F., Pontes T.R.F., Silva K.L., Damasceno I.H.M., Egito E.S.T., Dantas A.L., Morales M.A., Carriço A.S. Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J. Magn. Magn. Mater. 2014;364:72–79. doi: 10.1016/j.jmmm.2014.04.001. DOI

Khmara I., Koneracka M., Kubovcikova M., Zavisova V., Antal I., Csach K., Kopcansky P., Vidlickova I., Csaderova L., Pastorekova S., et al. Preparation of poly-l-lysine functionalised magnetic nanoparticles and their influence on viability of cancer cells. J. Magn. Magn. Mater. 2017;427:114–121. doi: 10.1016/j.jmmm.2016.11.014. DOI

Kubovcikova M., Koneracká M., Strbak O., Molcan M., Zavisova V., Antal I., Khmara I., Lucanska D., Tomco L., Barathova M., et al. Poly-L-lysine designed magnetic nanoparticles for combined hyperthermia, magnetic resonance imaging and cancer cell detection. J. Magn. Magn. Mater. 2019;475:316–326. doi: 10.1016/j.jmmm.2018.11.027. DOI

Babic M., Horak D., Trchova M., Jendelova P., Glogarova K., Lesna P., Herynek V., Hajek M., Sykova E. Poly(l-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate. Chem. 2008;19:740–750. doi: 10.1021/bc700410z. PubMed DOI

Zavisova V., Koneracka M., Kovac J., Kubovcikova M., Antal I., Kopcansky P., Bednarikova M., Muckova M. The cytotoxicity of iron oxide nanoparticles with different modifications evaluated in vitro. J. Magn. Magn. Mater. 2015;380:85–89. doi: 10.1016/j.jmmm.2014.10.041. DOI

Zavisova V., Koneracka M., Gabelova A., Svitkova B., Ursinyova M., Kubovcikova M., Antal I., Khmara I., Jurikova A., Molcan M., et al. Effect of magnetic nanoparticles coating on cell proliferation and uptake. J. Magn. Magn. Mater. 2016;380:85–89. doi: 10.1016/j.jmmm.2014.10.041. DOI

Kubovcikova M., Antal I., Koneracka M., Zavisova V., Jurikova A., Siposova K., Gazova Z., Kovac J., Kovarik M., Kupka D., et al. Magnetic nanoparticles modified with polyethylene glycol. Magnetohydrodynamics. 2013;49:282–286. doi: 10.22364/mhd.49.3-4.6. DOI

Antal I., Kubovcikova M., Zavisova V., Koneracka M., Pechanova O., Barta A., Cebova M., Antal V., Diko P., Zduriencikova M., et al. Magnetic poly(d,l-lactide) nanoparticles loaded with aliskiren: A promising tool for hypertension treatment. J. Magn. Magn. Mater. 2015;380:280–284. doi: 10.1016/j.jmmm.2014.10.089. DOI

Strbak O., Antal I., Gogola D., Baciak L., Kubovcikova M., Koneracka M., Zavisova V., Krafcik A., Masarova-Kozelova M., Kopcansky P., et al. Measurement of the magnetite nanoparticles’ relaxivity during encapsulation into polylactide carriers. Measurement. 2017;104:89–92. doi: 10.1016/j.measurement.2017.03.019. DOI

Rahayu L.B.H., Wulandari I.O., Santjojo D.H., Sabarudin A. Synthesis and characterization of Fe3O4 nanoparticles using polyvinyl alcohol (PVA) as capping agent and glutaraldehyde (GA) as crosslinker. Mater. Sci. Eng. 2018;299:012062. doi: 10.1088/1757-899X/299/1/012062. DOI

Khmara I., Strbak O., Zavisova V., Koneracka M., Kubovcikova M., Antal I., Kavecansky V., Lucanska D., Dobrota D., Kopcansky P. Chitosan-stabilized iron oxide nanoparticles for magnetic resonance imaging. J. Magn. Magn. Mater. 2019;474:319–325. doi: 10.1016/j.jmmm.2018.11.026. DOI

Li G.Y., Jiang Y.R., Huang K.L., Ding P., Chen J. Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J. Alloys Compd. 2008;466:451–456. doi: 10.1016/j.jallcom.2007.11.100. DOI

Siposova K., Pospiskova K., Bednarikova Z., Safarik I., Safarikova M., Kubovcikova M., Kopcansky P., Gazova Z. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation. J. Magn. Magn. Mater. 2017;427:48–53. doi: 10.1016/j.jmmm.2016.10.083. DOI

Majeed J., Pradhan L., Ningthoujam R.S., Vatsa R.K., Bahadur D., Tyagi A.K. Enhanced specific absorption rate in silanol functionalised Fe3O4 core–shell nanoparticles: Study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells. Colloids Surf. B Biointerfaces. 2014;122:396–403. doi: 10.1016/j.colsurfb.2014.07.019. PubMed DOI

Jozefczak A., Hornowski T., Skumiel A., Zavisova V., Koneracka M., Tomasovicova N., Timko M., Kopcansky P., Kelani H.N. Effect of the molecular weight of poly(ethylene glycol) on the properties of biocompatible magnetic fluids. Int. J. Thermophys. 2012;33:640–652. doi: 10.1007/s10765-011-1061-4. DOI

Maia J., Evangelista M.B., Gil H., Ferreira L. Dextran-based materials for biomedical applications. Res. Signpost. 2014;37661:31–53.

Linh P.H., Phuc N.X., Hong L.V., Uyen L.L., Chien N.V., Nam P.H., Quy N.T., Nhung H.T.M., Phong P.T., Lee I.J. Dextran coated magnetite high susceptibility nanoparticles for hyperthermia applications. J. Magn. Magn. Mater. 2018;460:128–136. doi: 10.1016/j.jmmm.2018.03.065. DOI

Wang Y.X., Hussain S.M., Krestin G.P. Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging. Eur. Radiol. 2001;11:2319–2331. doi: 10.1007/s003300100908. PubMed DOI

Portet D., Denizot B., Rump E., Lejeune J.J., Jallet P. Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J. Colloid. Interface Sci. 2001;238:37–42. doi: 10.1006/jcis.2001.7500. PubMed DOI

Hong R.Y., Feng B., Chen L.L., Liu G.H., Li Z.H., Zheng Y., Wei D.G. Synthesis, characterisation and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem. Engin. J. 2008;42:290–300. doi: 10.1016/j.bej.2008.07.009. DOI

Molday R.S., Mackenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods. 1982;52:353–367. doi: 10.1016/0022-1759(82)90007-2. PubMed DOI

Woods J., Mellon M. Thiocyanate Method for Iron: A Spectrophotometric Study. Determination of iron by thiocyanate colorimetry. Ind. Eng. Chem. Anal. Ed. 1941;13:551–554. doi: 10.1021/i560096a013. DOI

Skumiel A., Kaczmarek K., Flak D., Rajnak M., Antal I., Brzakala H. The influence of magnetic nanoparticle concentration with dextran polymers in agar gel on heating efficiency in magnetic hyperthermia. J. Mol. Liq. 2020;304:112734. doi: 10.1016/j.molliq.2020.112734. DOI

Larsen E.K.U., Nielsen T., Wittenborn T., Rydtoft L.M., Lokanathan A.R., Hansen L., Ostergaard L., Kingshott P., Howard K.A., Besenbacher F., et al. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors. Nanoscale. 2012;4:2352–2361. doi: 10.1039/c2nr11554a. PubMed DOI

LaConte L.E.W., Nitin N., Zurkiya O., Caruntu D., O’Connor C.J., Hu X., Bao G. Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity. J. Magn. Reason. Imaging. 2007;26:1634–1641. doi: 10.1002/jmri.21194. PubMed DOI

Xue W., Liu Y., Zhang N., Yao Y., Ma P., Wen H., Huang S., Luo Y., Fan H.M. Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice. Int. J. Nanomed. 2018;13:5719–5731. doi: 10.2147/IJN.S165451. PubMed DOI PMC

Shaterbadi Z., Nabiyouni G., Soleymani M. High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles. Mater. Sci. Eng. C. 2017;75:947–956. doi: 10.1016/j.msec.2017.02.143. PubMed DOI

Sperling R.A., Liedl T., Duhr S., Kudera S., Zanella M., Lin C.A.J., Chang W.H., Braun D., Parak W.J. Size determination of (bio)conjugated water-soluble colloidal nanoparticles: A comparison of different techniques. J. Phys. Chem. C. 2007;111:11552–11559. doi: 10.1021/jp070999d. DOI

Carp O., Patron L., Culita D.C., Budrugeac P., Feder M., Diamandescu L. Thermal analysis of two types of dextran-coated magnetite. J. Therm. Anal. Calorim. 2010;101:181–187. doi: 10.1007/s10973-009-0593-3. DOI

Koneracka M., Antosova A., Zavisova V., Lancz G., Gazova Z., Siposova K., Jurikova A., Csach K., Kovac J., Tomasovicova N., et al. Characterization of Fe3O4 magnetic nanoparticles modified with dextran and investigation of their interaction with protein amyloid aggregates. Acta Phys. Polonica A. 2010;118:983–985. doi: 10.12693/APhysPolA.118.983. DOI

Butterworth M.D., Illum L., Davis S.S. Preparation of ultrafine silica- and PEG-coated magnetite particles. Colloids Surf. A Physicochem. Eng. Asp. 2001;179:93–102. doi: 10.1016/S0927-7757(00)00633-6. DOI

Jurikova A., Csach K., Miskuf J., Koneracka M., Zavisova V., Kubovcikova M., Kopcansky P., Muckova M. Thermal properties of magnetic nanoparticles modified with polyethylene glycol. IEEE Trans. Magn. 2013;49:236–239. doi: 10.1109/TMAG.2012.2224322. DOI

Yoona M., Kima Y.M., Kima Y., Volkova V., Songa H.J., Parkb Y.J., Vasilyakc S.L., Parka I.-W. Magnetic properties of iron nanoparticles in a polymer film. J. Magn. Magn. Mater. 2003;265:357–362. doi: 10.1016/S0304-8853(03)00288-9. DOI

Khmara I., Molcan M., Antosova A., Bednarikova Z., Zavisova V., Kubovcikova M., Jurikova A., Girman V., Baranovicova E., Koneracka M., et al. Bioactive properties of chitosan stabilised magnetic nanoparticles—Focus on hyperthermic and anti-amyloid activities. J. Magn. Magn. Mater. 2020;513:167056. doi: 10.1016/j.jmmm.2020.167056. DOI

Skumiel A., Leszczyński B., Molcan M., Timko M. The comparison of magnetic circuits used in magnetic hyperthermia. J. Magn. Magn. Mater. 2016;420:177–184. doi: 10.1016/j.jmmm.2016.07.018. DOI

Kostevsek N. A review on the optimal design of magnetic nanoparticle-based T2 MRI contrast agents. Magnetochemistry. 2020;6:11. doi: 10.3390/magnetochemistry6010011. DOI

Mishra S.K., Hemanth Kumar B.S., Khushu S., Tripathi R.P., Gangenahalli G. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging. Contrast Media Mol. Imaging. 2016;11:350–361. doi: 10.1002/cmmi.1698. PubMed DOI

Qin J., Laurent S., Jo Y.S., Roch A., Mikhaylova M., Bhujwalla Z.M., Muller R.N., Muhammed M. A high-performance magnetic resonance imaging T2 contrast agent. Adv. Mater. 2007;19:1874–1878. doi: 10.1002/adma.200602326. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...