Influence of Dextran Molecular Weight on the Physical Properties of Magnetic Nanoparticles for Hyperthermia and MRI Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2018/11-UKMT-7
Ministry of Health of the Slovak Republic
ITMS code: 26220220153
Competence Centre Martin
COST CA17115
COST action MyWave
E!9982
EUREKA project E!9982-NANORADIOMAG
VEGA 2/0033/19
National Grant Agency VEGA
APVV SK-SRB-18-0055
APVV
APVV-DS-FR-19-0052
APVV
ITMS 313011T548
project MODEX supported by the Operational Programme Integrated Infrastructure (OPII) funded by the ERDF
PubMed
33317168
PubMed Central
PMC7763203
DOI
10.3390/nano10122468
PII: nano10122468
Knihovny.cz E-zdroje
- Klíčová slova
- MRI, dextran, diameter, magnetic fluid, magnetic hyperthermia, magnetic nanoparticles, physical properties, relaxivity,
- Publikační typ
- časopisecké články MeSH
Dextran-coated magnetic nanoparticles are promising biocompatible agents in various biomedical applications, including hyperthermia and magnetic resonance imaging (MRI). However, the influence of dextran molecular weight on the physical properties of dextran-coated magnetic nanoparticles has not been described sufficiently. We synthesise magnetite nanoparticles with a dextran coating using a co-precipitation method and study their physical properties as a function of dextran molecular weight. Several different methods are used to determine the size distribution of the particles, including microscopy, dynamic light scattering, differential centrifugal sedimentation and magnetic measurements. The size of the dextran-coated particles increases with increasing dextran molecular weight. We find that the molecular weight of dextran has a significant effect on the particle size, efficiency, magnetic properties and specific absorption rate. Magnetic hyperthermia measurements show that heating is faster for dextran-coated particles with higher molecular weight. The different molecular weights of the coating also significantly affected its MRI relaxation properties, especially the transversal relaxivity r2. Linear regression analysis reveals a statistically significant dependence of r2 on the differential centrifugal sedimentation diameter. This allows the targeted preparation of dextran-coated magnetic nanoparticles with the desired MRI properties. These results will aid the development of functionalised magnetic nanoparticles for hyperthermia and MRI applications.
Zobrazit více v PubMed
Colombo M., Carregal-Romero S., Casula M.F., Gutiérrez L., Morales M.P., Böhm I.B., Heverhagen J.T., Prosperi D., Parak W.J. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 2012;41:4306–4334. doi: 10.1039/c2cs15337h. PubMed DOI
Varanda L.C., Júnior M.J., Júnior W.B. Magnetic and Multifunctional Magnetic Nanoparticles in Nanomedicine: Challenges and Trends in Synthesis and Surface Engineering for Diagnostic and Therapy Applications. In: Laskovski A.N., editor. Biomedical Engineering. IntechOpen; Rijeka, Croatia: 2011.
Kashkooli F.M., Soltani M., Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J. Control. Release. 2020;327:316–349. doi: 10.1016/j.jconrel.2020.08.012. PubMed DOI
Hola K., Markova Z., Zoppellaro G., Tucek J., Zboril R. Tailored functionalisation of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilisation of biosubstances. Biotechnol. Adv. 2015;33:1162–1176. doi: 10.1016/j.biotechadv.2015.02.003. PubMed DOI
Das P., Colombo M., Prosperi D. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf. B Biointerfaces. 2019;174:42–55. doi: 10.1016/j.colsurfb.2018.10.051. PubMed DOI
Liu X., Zhang Y., Wang Y., Zhu W., Li G., Ma X., Zhang Y., Shizu C., Tiwari S., Shi K., et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostic. 2020;10:3793–3815. doi: 10.7150/thno.40805. PubMed DOI PMC
Dutz S., Hergt R. Magnetic particle hyperthermia—A promising tumour therapy? Nanotechnology. 2014;14:452001. doi: 10.1088/0957-4484/25/45/452001. PubMed DOI
Molcan M., Gojzewski H., Skumiel A., Dutz S., Kovac J., Kubovcikova M., Kopcansky P., Vekas L., Timko M. Energy losses in mechanically modified bacterial magnetosomes. J. Phys. D Appl. Phys. 2016;49:365002. doi: 10.1088/0022-3727/49/36/365002. DOI
Ortega D., Pankhurst Q.A. In: Magnetic Hyperthermia, in Nanoscience: Volume 1: Nanostructures through Chemistry. O’Brien P., editor. Royal Society of Chemistry; Cambridge, UK: 2013. pp. 60–88.
Frtus A., Smolkova B., Uzhytchak M., Lunova M., Jirsa M., Kubinova S., Dejneka A., Lunov O. Analysing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. J. Control. Release. 2020;328:59–77. doi: 10.1016/j.jconrel.2020.08.036. PubMed DOI
Lanier O.L., Korotych O.I., Monsalve A.G., Wable D., Savliwala S., Grooms N.W.F., Nacea C., Tuitt O.R., Dobson J. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Inter. J. Hyperth. 2019;36:686–700. doi: 10.1080/02656736.2019.1628313. PubMed DOI
Babic M., Horak D., Molcan M., Timko M. Heat generation of surface-modified magnetic γ-Fe2O3 nanoparticles in applied alternating magnetic field. J. Phys. D Appl. Phys. 2017;50:345002. doi: 10.1088/1361-6463/aa7bcb. DOI
Osaci M., Cacciola M. About the influence of the colloidal magnetic nanoparticles coating on the specific loss power in magnetic hyperthermia. J. Magn. Magn. Mater. 2020;519:167451. doi: 10.1016/j.jmmm.2020.167451. DOI
Shaterabadi Z., Nabiyouni G., Soleymani M. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles. Mater. Sci. Eng. C. 2020;117:111274. doi: 10.1016/j.msec.2020.111274. PubMed DOI
Antal I., Koneracka M., Kubovcikova M., Zavisova V., Khmara I., Lucanska D., Jelenska L., Vidlickova I., Zatovicova M., Pastorekova S., et al. D,L-Lysine functionalised Fe3O4 nanoparticles for detection of cancer cells. Colloids Surf. B Biointerfaces. 2018;1:236–245. doi: 10.1016/j.colsurfb.2017.12.022. PubMed DOI
Kaczmarek K., Hornowski T., Antal I., Timko M., Józefczak A. Magneto-ultrasonic heating with nanoparticles. J. Magn. Magn. Mater. 2019;474:400–405. doi: 10.1016/j.jmmm.2018.11.062. DOI
Bica D., Vekas L., Avdeev M.V., Marinica O., Socoliuc V., Balasoiu M., Garamus V.M. Sterically stabilised water based magnetic fluids: Synthesis, structure and properties. J. Magn. Magn. Mater. 2007;311:17–21. doi: 10.1016/j.jmmm.2006.11.158. DOI
Araújo-Neto R.P., Silva-Freitas E.L., Carvalho J.F., Pontes T.R.F., Silva K.L., Damasceno I.H.M., Egito E.S.T., Dantas A.L., Morales M.A., Carriço A.S. Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J. Magn. Magn. Mater. 2014;364:72–79. doi: 10.1016/j.jmmm.2014.04.001. DOI
Khmara I., Koneracka M., Kubovcikova M., Zavisova V., Antal I., Csach K., Kopcansky P., Vidlickova I., Csaderova L., Pastorekova S., et al. Preparation of poly-l-lysine functionalised magnetic nanoparticles and their influence on viability of cancer cells. J. Magn. Magn. Mater. 2017;427:114–121. doi: 10.1016/j.jmmm.2016.11.014. DOI
Kubovcikova M., Koneracká M., Strbak O., Molcan M., Zavisova V., Antal I., Khmara I., Lucanska D., Tomco L., Barathova M., et al. Poly-L-lysine designed magnetic nanoparticles for combined hyperthermia, magnetic resonance imaging and cancer cell detection. J. Magn. Magn. Mater. 2019;475:316–326. doi: 10.1016/j.jmmm.2018.11.027. DOI
Babic M., Horak D., Trchova M., Jendelova P., Glogarova K., Lesna P., Herynek V., Hajek M., Sykova E. Poly(l-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate. Chem. 2008;19:740–750. doi: 10.1021/bc700410z. PubMed DOI
Zavisova V., Koneracka M., Kovac J., Kubovcikova M., Antal I., Kopcansky P., Bednarikova M., Muckova M. The cytotoxicity of iron oxide nanoparticles with different modifications evaluated in vitro. J. Magn. Magn. Mater. 2015;380:85–89. doi: 10.1016/j.jmmm.2014.10.041. DOI
Zavisova V., Koneracka M., Gabelova A., Svitkova B., Ursinyova M., Kubovcikova M., Antal I., Khmara I., Jurikova A., Molcan M., et al. Effect of magnetic nanoparticles coating on cell proliferation and uptake. J. Magn. Magn. Mater. 2016;380:85–89. doi: 10.1016/j.jmmm.2014.10.041. DOI
Kubovcikova M., Antal I., Koneracka M., Zavisova V., Jurikova A., Siposova K., Gazova Z., Kovac J., Kovarik M., Kupka D., et al. Magnetic nanoparticles modified with polyethylene glycol. Magnetohydrodynamics. 2013;49:282–286. doi: 10.22364/mhd.49.3-4.6. DOI
Antal I., Kubovcikova M., Zavisova V., Koneracka M., Pechanova O., Barta A., Cebova M., Antal V., Diko P., Zduriencikova M., et al. Magnetic poly(d,l-lactide) nanoparticles loaded with aliskiren: A promising tool for hypertension treatment. J. Magn. Magn. Mater. 2015;380:280–284. doi: 10.1016/j.jmmm.2014.10.089. DOI
Strbak O., Antal I., Gogola D., Baciak L., Kubovcikova M., Koneracka M., Zavisova V., Krafcik A., Masarova-Kozelova M., Kopcansky P., et al. Measurement of the magnetite nanoparticles’ relaxivity during encapsulation into polylactide carriers. Measurement. 2017;104:89–92. doi: 10.1016/j.measurement.2017.03.019. DOI
Rahayu L.B.H., Wulandari I.O., Santjojo D.H., Sabarudin A. Synthesis and characterization of Fe3O4 nanoparticles using polyvinyl alcohol (PVA) as capping agent and glutaraldehyde (GA) as crosslinker. Mater. Sci. Eng. 2018;299:012062. doi: 10.1088/1757-899X/299/1/012062. DOI
Khmara I., Strbak O., Zavisova V., Koneracka M., Kubovcikova M., Antal I., Kavecansky V., Lucanska D., Dobrota D., Kopcansky P. Chitosan-stabilized iron oxide nanoparticles for magnetic resonance imaging. J. Magn. Magn. Mater. 2019;474:319–325. doi: 10.1016/j.jmmm.2018.11.026. DOI
Li G.Y., Jiang Y.R., Huang K.L., Ding P., Chen J. Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J. Alloys Compd. 2008;466:451–456. doi: 10.1016/j.jallcom.2007.11.100. DOI
Siposova K., Pospiskova K., Bednarikova Z., Safarik I., Safarikova M., Kubovcikova M., Kopcansky P., Gazova Z. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation. J. Magn. Magn. Mater. 2017;427:48–53. doi: 10.1016/j.jmmm.2016.10.083. DOI
Majeed J., Pradhan L., Ningthoujam R.S., Vatsa R.K., Bahadur D., Tyagi A.K. Enhanced specific absorption rate in silanol functionalised Fe3O4 core–shell nanoparticles: Study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells. Colloids Surf. B Biointerfaces. 2014;122:396–403. doi: 10.1016/j.colsurfb.2014.07.019. PubMed DOI
Jozefczak A., Hornowski T., Skumiel A., Zavisova V., Koneracka M., Tomasovicova N., Timko M., Kopcansky P., Kelani H.N. Effect of the molecular weight of poly(ethylene glycol) on the properties of biocompatible magnetic fluids. Int. J. Thermophys. 2012;33:640–652. doi: 10.1007/s10765-011-1061-4. DOI
Maia J., Evangelista M.B., Gil H., Ferreira L. Dextran-based materials for biomedical applications. Res. Signpost. 2014;37661:31–53.
Linh P.H., Phuc N.X., Hong L.V., Uyen L.L., Chien N.V., Nam P.H., Quy N.T., Nhung H.T.M., Phong P.T., Lee I.J. Dextran coated magnetite high susceptibility nanoparticles for hyperthermia applications. J. Magn. Magn. Mater. 2018;460:128–136. doi: 10.1016/j.jmmm.2018.03.065. DOI
Wang Y.X., Hussain S.M., Krestin G.P. Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging. Eur. Radiol. 2001;11:2319–2331. doi: 10.1007/s003300100908. PubMed DOI
Portet D., Denizot B., Rump E., Lejeune J.J., Jallet P. Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J. Colloid. Interface Sci. 2001;238:37–42. doi: 10.1006/jcis.2001.7500. PubMed DOI
Hong R.Y., Feng B., Chen L.L., Liu G.H., Li Z.H., Zheng Y., Wei D.G. Synthesis, characterisation and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem. Engin. J. 2008;42:290–300. doi: 10.1016/j.bej.2008.07.009. DOI
Molday R.S., Mackenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods. 1982;52:353–367. doi: 10.1016/0022-1759(82)90007-2. PubMed DOI
Woods J., Mellon M. Thiocyanate Method for Iron: A Spectrophotometric Study. Determination of iron by thiocyanate colorimetry. Ind. Eng. Chem. Anal. Ed. 1941;13:551–554. doi: 10.1021/i560096a013. DOI
Skumiel A., Kaczmarek K., Flak D., Rajnak M., Antal I., Brzakala H. The influence of magnetic nanoparticle concentration with dextran polymers in agar gel on heating efficiency in magnetic hyperthermia. J. Mol. Liq. 2020;304:112734. doi: 10.1016/j.molliq.2020.112734. DOI
Larsen E.K.U., Nielsen T., Wittenborn T., Rydtoft L.M., Lokanathan A.R., Hansen L., Ostergaard L., Kingshott P., Howard K.A., Besenbacher F., et al. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors. Nanoscale. 2012;4:2352–2361. doi: 10.1039/c2nr11554a. PubMed DOI
LaConte L.E.W., Nitin N., Zurkiya O., Caruntu D., O’Connor C.J., Hu X., Bao G. Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity. J. Magn. Reason. Imaging. 2007;26:1634–1641. doi: 10.1002/jmri.21194. PubMed DOI
Xue W., Liu Y., Zhang N., Yao Y., Ma P., Wen H., Huang S., Luo Y., Fan H.M. Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice. Int. J. Nanomed. 2018;13:5719–5731. doi: 10.2147/IJN.S165451. PubMed DOI PMC
Shaterbadi Z., Nabiyouni G., Soleymani M. High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles. Mater. Sci. Eng. C. 2017;75:947–956. doi: 10.1016/j.msec.2017.02.143. PubMed DOI
Sperling R.A., Liedl T., Duhr S., Kudera S., Zanella M., Lin C.A.J., Chang W.H., Braun D., Parak W.J. Size determination of (bio)conjugated water-soluble colloidal nanoparticles: A comparison of different techniques. J. Phys. Chem. C. 2007;111:11552–11559. doi: 10.1021/jp070999d. DOI
Carp O., Patron L., Culita D.C., Budrugeac P., Feder M., Diamandescu L. Thermal analysis of two types of dextran-coated magnetite. J. Therm. Anal. Calorim. 2010;101:181–187. doi: 10.1007/s10973-009-0593-3. DOI
Koneracka M., Antosova A., Zavisova V., Lancz G., Gazova Z., Siposova K., Jurikova A., Csach K., Kovac J., Tomasovicova N., et al. Characterization of Fe3O4 magnetic nanoparticles modified with dextran and investigation of their interaction with protein amyloid aggregates. Acta Phys. Polonica A. 2010;118:983–985. doi: 10.12693/APhysPolA.118.983. DOI
Butterworth M.D., Illum L., Davis S.S. Preparation of ultrafine silica- and PEG-coated magnetite particles. Colloids Surf. A Physicochem. Eng. Asp. 2001;179:93–102. doi: 10.1016/S0927-7757(00)00633-6. DOI
Jurikova A., Csach K., Miskuf J., Koneracka M., Zavisova V., Kubovcikova M., Kopcansky P., Muckova M. Thermal properties of magnetic nanoparticles modified with polyethylene glycol. IEEE Trans. Magn. 2013;49:236–239. doi: 10.1109/TMAG.2012.2224322. DOI
Yoona M., Kima Y.M., Kima Y., Volkova V., Songa H.J., Parkb Y.J., Vasilyakc S.L., Parka I.-W. Magnetic properties of iron nanoparticles in a polymer film. J. Magn. Magn. Mater. 2003;265:357–362. doi: 10.1016/S0304-8853(03)00288-9. DOI
Khmara I., Molcan M., Antosova A., Bednarikova Z., Zavisova V., Kubovcikova M., Jurikova A., Girman V., Baranovicova E., Koneracka M., et al. Bioactive properties of chitosan stabilised magnetic nanoparticles—Focus on hyperthermic and anti-amyloid activities. J. Magn. Magn. Mater. 2020;513:167056. doi: 10.1016/j.jmmm.2020.167056. DOI
Skumiel A., Leszczyński B., Molcan M., Timko M. The comparison of magnetic circuits used in magnetic hyperthermia. J. Magn. Magn. Mater. 2016;420:177–184. doi: 10.1016/j.jmmm.2016.07.018. DOI
Kostevsek N. A review on the optimal design of magnetic nanoparticle-based T2 MRI contrast agents. Magnetochemistry. 2020;6:11. doi: 10.3390/magnetochemistry6010011. DOI
Mishra S.K., Hemanth Kumar B.S., Khushu S., Tripathi R.P., Gangenahalli G. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging. Contrast Media Mol. Imaging. 2016;11:350–361. doi: 10.1002/cmmi.1698. PubMed DOI
Qin J., Laurent S., Jo Y.S., Roch A., Mikhaylova M., Bhujwalla Z.M., Muller R.N., Muhammed M. A high-performance magnetic resonance imaging T2 contrast agent. Adv. Mater. 2007;19:1874–1878. doi: 10.1002/adma.200602326. DOI