Sex-biased topography effects on butterfly dispersal
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MSM 6046070901
Fakultu Agrobiologie, Potravinových a Prírodních Zdrojů, Česká Zemědělská Univerzita v Praze
20152004
Česká Zemědělská Univerzita v Praze
20172002
Česká Zemědělská Univerzita v Praze
UMO-2019/33/N/NZ8/02848
Narodowe Centrum Nauki
UMO-2019/33/B/NZ9/00590
Narodowe Centrum Nauki
PubMed
33317641
PubMed Central
PMC7737334
DOI
10.1186/s40462-020-00234-6
PII: 10.1186/s40462-020-00234-6
Knihovny.cz E-zdroje
- Klíčová slova
- Habitat fragmentation, Landscape, Maculinea (Phengaris), Mating strategies, Metapopulation,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Metapopulation persistence in fragmented landscapes is assured by dispersal of individuals between local populations. In this scenario the landscape topography, although usually neglected, may have an important role in shaping dispersal throughout the matrix separating habitat patches. Due to inter-sexual differences in optimal reproductive strategies, i.e., males maximizing the number of mating opportunities and females maximizing the offspring survival chances, topography-related constraints are expected to exert a different effect on male and female dispersal behaviour. We tested sex-biased topography effects on butterfly dispersal, with the following hypotheses: (1) females are constrained by topography in their movements and avoid hill crossing; (2) male dispersal is primarily driven by two-dimensional spatial structure of the habitat patches (i.e. their geometric locations and sizes) and little influenced by topography. METHODS: Following intensive mark-recapture surveys of Maculinea (= Phengaris) nausithous and M. teleius within a landscape characterised by an alternation of hills and valleys, we investigated sex-specific patterns in their inter-patch movement probabilities derived with a multi-state recapture model. In particular, we (1) analysed the fit of dispersal kernels based on Euclidean (= straight line) vs. topography-based (= through valley) distances; (2) compared movement probabilities for the pairs of patches separated or not by topographic barriers; and (3) tested the differences in the downward and upward movement probabilities within the pairs of patches. RESULTS: Euclidean distances between patches proved to be a substantially stronger predictor of inter-patch movement probabilities in males, while inter-patch distances measured along valleys performed much better for females, indicating that the latter tend to predominantly follow valleys when dispersing. In addition, there were significantly lower probabilities of movements across hills in females, but not in males. CONCLUSIONS: Both above results provide support for the hypothesis that topography restricts dispersal in females, but not in males. Since the two sexes contribute differently to metapopulation functioning, i.e., only female dispersal can result in successful (re)colonisations of vacant patches, the topography effects exerted on females should be considered with particular attention when landscape management and conservation actions are designed in order to maintain the functional connectivity of metapopulation systems.
Zobrazit více v PubMed
Alderman J, Hinsley SA. Modelling the third dimension: incorporating topography into the movement rules of an individual-based spatially explicit population model. Ecol Complex. 2007;4:169–181. doi: 10.1016/j.ecocom.2007.06.009. DOI
Anton C, Musche M, Hula V, Settele J. Myrmica host-ants limit the density of the ant-predatory large blue Maculinea nausithous. J Insect Conserv. 2008;12:511–517. doi: 10.1007/s10841-007-9091-8. DOI
Baguette M, Clobert J, Schtickzelle N. Metapopulation dynamics of the bog fritillary butterfly: experimental changes in habitat quality induced negative density-dependent dispersal. Ecography. 2011;34:170–176. doi: 10.1111/j.1600-0587.2010.06212.x. DOI
Baguette M, Van Dyck H. Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc Ecol. 2007;22:1117–1129. doi: 10.1007/s10980-007-9108-4. DOI
Bennett VJ, Pack SM, Smith WP, Betts MG. Sex-biased dispersal in a rare butterfly and the implications for its conservation. J Insect Conserv. 2013;17:949–958. doi: 10.1007/s10841-013-9577-5. DOI
Bergman KO, Landin J. Population structure and movements of a threatened butterfly (Lopinga achine) in a fragmented landscape in Sweden. Biol Conserv. 2002;108:361–369. doi: 10.1016/S0006-3207(02)00104-0. DOI
Bonelli S, Vrabec V, Witek M, Barbero F, Patricelli D, Nowicki P. Selection against dispersal in isolated butterfly metapopulations. Popul Ecol. 2013;55:469–478. doi: 10.1007/s10144-013-0377-2. DOI
Bonnet E, Van de Peer Y. Zt: a software tool for simple and partial Mantel tests. J Stat Softw. 2002;7:1–12. doi: 10.18637/jss.v007.i10. DOI
Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin K, Saastamoinen M, Schtickzelle N, Stevens VM, Vandewoestijne S, Baguette M, Barton K, Benton TG, Chaput-Bardy A, Clobert J, Dytham C, Hovestadt T, Meier CM, Palmer SCF, Turlure C, Travis JMJ. Costs of dispersal. Biol Rev. 2012;87:290–312. doi: 10.1111/j.1469-185X.2011.00201.x. PubMed DOI
Bouchet PJ, Meeuwig JJ, Salgado KCP, Letessier TB, Jenner CK. Topographic determinants of mobile vertebrate predator hotspots: current knowledge and future directions. Biol Rev. 2015;90:699–728. doi: 10.1111/brv.12130. PubMed DOI
Bowler DE, Benton TG. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev. 2005;80:205–225. doi: 10.1017/S1464793104006645. PubMed DOI
Brownie C, Hines JE, Nichols JD, Pollock KH, Hestbeck JB. Capture-recapture studies for multiple strata including non-Markovian transitions. Biometrics. 1993;49:1173–1187. doi: 10.2307/2532259. DOI
Burnham KP, Anderson DR. Model selection and inference. Berlin: Springer-Verlag; 1998.
Calabrese JM, Fagan WF. A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ. 2004;2:529–536. doi: 10.1890/1540-9295(2004)002[0529:ACGTCM]2.0.CO;2. DOI
Calleri DV, Rosengaus RB, Traniello JFA. Disease and colony establishment in the dampwood termite Zootermopsis angusticollis: survival and fitness consequences of infection in primary reproductives. Insect Soc. 2006;53:204–211. doi: 10.1007/s00040-005-0859-0. DOI
Campbell JW, Hanula JL, Waldrop TA. Observations of Speyeria diana (Diana Fritillary) utilizing forested areas in North Carolina that have been mechanically thinned and burned. Southeast Nat. 2007;6:179–182. doi: 10.1656/1528-7092(2007)6[179:OOSDDF]2.0.CO;2. DOI
Casacci LP, Cerrato C, Barbero F, Bosso L, Ghidotti S, Paveto M, Pesce M, Plazio E, Panizza G, Balletto E, Viterbi R, Bonelli S. Dispersal and connectivity effects at different altitudes in the Euphydryas aurinia complex. J Insect Conserv. 2015;19:265–277. doi: 10.1007/s10841-014-9715-8. DOI
Cassel-Lundhagen A, Sjögren-Gulve P. Limited dispersal by the rare scarce heath butterfly —potential consequences for population persistence. J Insect Conserv. 2007;11:113–121. doi: 10.1007/s10841-006-9023-z. DOI
Cílek V, Williams R, Osborne A, Migoń P, Mikuláš R. The origin and development of sandstone landforms. In: Härtel H, Cílek V, Herben T, Jackson A, Williams R, editors. Sandstone landscapes. Prague: Academia; 2007. pp. 34–43.
Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewison AJ. Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual–based approach. Mol Ecol. 2004;13:2841–2850. doi: 10.1111/j.1365-294X.2004.02253.x. PubMed DOI
Davies NB. Territorial defence in the speckled wood butterfly (Pararge aegeria): the resident always wins. Anim Behav. 1978;26:138–147. doi: 10.1016/0003-3472(78)90013-1. DOI
Davies WJ, Saccheri IJ. Male emergence schedule and dispersal behaviour are modified by mate availability in heterogeneous landscapes: evidence from the orange-tip butterfly. PeerJ. 2015;3:e707. doi: 10.7717/peerj.707. PubMed DOI PMC
Dennis RLH, Dapporto L, Dover JW, Shreeve TG. Corridors and barriers in biodiversity conservation: a novel resource-based habitat perspective for butterflies. Biodivers Conserv. 2013;22:2709–2734. doi: 10.1007/s10531-013-0540-2. DOI
Dennis RLH, Shreeve TG. Hostplant-habitat structure and the evolution of butterfly mate-locating behaviour. Zool J Linn Soc-Lond. 1988;94:301–318. doi: 10.1111/j.1096-3642.1988.tb01198.x. DOI
Dierks A, Fischer K. Habitat requirements and niche selection of Maculinea nausithous and M. teleius (Lepidoptera: Lycaenidae) within a large sympatric metapopulation. Biodivers Conserv. 2009;18:3663–3676. doi: 10.1007/s10531-009-9670-y. DOI
Dudley R. Biomechanics of flight in neotropical butterflies: aerodynamics and mechanical power requirements. J Exp Biol. 1991;159:335–357.
Dudley R. The evolutionary physiology of animal flight: paleobiological and present perspectives. Annu Rev Physiol. 2000;62:135–155. doi: 10.1146/annurev.physiol.62.1.135. PubMed DOI
Ehrlich PR. The structure and dynamics of butterfly populations. In: Vane-Wright RI, Ackery PR, editors. The biology of butterflies. Symposia of the Royal Entomological Society of London. London: Academic; 1984. pp. 25–40.
Englund G, Hambäck PA. Scale dependence of immigration rates: models, metrics and data. J Anim Ecol. 2007;76:30–35. doi: 10.1111/j.1365-2656.2006.01174.x. PubMed DOI
Eycott AE, Stewart GB, Buyung-Ali LM, Bowler DE, Watts K, Pullin AS. A meta-analysis on the impact of different matrix structures on species movement rates. Landsc Ecol. 2012;27:1263–1278. doi: 10.1007/s10980-012-9781-9. DOI
Florinsky IV, Galina AK. Influence of topography on some vegetation cover properties. Catena. 1996;27:123–141. doi: 10.1016/0341-8162(96)00005-7. DOI
Funk WC, Greene AE, Corn PS, Allendorf FW. High dispersal in a frog species suggests that it is vulnerable to habitat fragmentation. Biol Lett. 2005;1:13–16. doi: 10.1098/rsbl.2004.0270. PubMed DOI PMC
Gao K, Li X, Chen F, Guo Z, Settele J. Distribution and habitats of Phengaris (Maculinea) butterflies and population ecology of Phengaris teleius in China. J Insect Conserv. 2016;20:1–10. doi: 10.1007/s10841-015-9834-x. DOI
Gilchrist GW. The consequences of sexual dimorphism in body size for butterfly flight and thermoregulation. Funct Ecol. 1990;4:475–487. doi: 10.2307/2389315. DOI
Goodwin BJ. Is landscape connectivity a dependent or independent variable? Landsc Ecol. 2003;18:687–699. doi: 10.1023/B:LAND.0000004184.03500.a8. DOI
Graf RF, Kramer-Schadt S, Fernández N, Grimm V. What you see is where you go? Modeling dispersal in mountainous landscapes. Landsc Ecol. 2007;22:853–866. doi: 10.1007/s10980-006-9073-3. DOI
Grof-Tisza P, Steel Z, Cole EM, Holyoak M, Karban R. Testing predictions of movement behaviour in a hilltopping moth. Anim Behav. 2017;133:161–168. doi: 10.1016/j.anbehav.2017.08.028. DOI
Hambäck PA, Englund G. Patch area, population density and the scaling of migration rates: the resource concentration hypothesis revisited. Ecol Lett. 2005;8:1057–1065. doi: 10.1111/j.1461-0248.2005.00811.x. DOI
Hamilton WD, May RM. Dispersal in stable habitats. Nature. 1977;269:578–581. doi: 10.1038/269578a0. DOI
Hanski I. Metapopulation ecology. Oxford: Oxford University Press; 1999.
Hanski I, Alho J, Moilanen A. Estimating the parameters of survival and migration of individuals in metapopulations. Ecology. 2000;81:239–251. doi: 10.2307/177147. DOI
Hanski I, Erälahti C, Kankare M, Ovaskainen O, Sirén H. Variation in migration propensity among individuals maintained by landscape structure. Ecol Lett. 2004;7:958–966. doi: 10.1111/j.1461-0248.2004.00654.x. DOI
Hanski I, Gaggiotti OE. Ecology, genetics and evolution of metapopulations. San Diego: Elsevier Academic Press; 2004.
Hurvich CM, Tsai C. Regression and time series model selection in small samples. Biometrika. 1989;76:297–307. doi: 10.1093/biomet/76.2.297. DOI
Ims RA, Yoccoz NG. Studying transfer processes in metapopulations: emigration, migration, and colonization. In: Hanski I, Gilpin ME, McCauley DE, editors. Metapopulation biology. San Diego: Academic; 1997. pp. 247–265.
Itioka T, Inoue T. Settling-site selection and survival of 2 scale insects, Ceroplastes rubens and C. ceriferus, on citrus trees. Res Popul Ecol. 1991;33:69–85. doi: 10.1007/BF02514575. DOI
Kallioniemi E, Zannese A, Tinker JE, Franco AM. Inter-and intra-specific differences in butterfly behaviour at boundaries. Insect Conserv Diver. 2014;7:232–240. doi: 10.1111/icad.12046. DOI
Konvička M, Kuras T. Population structure, behaviour and selection of oviposition sites of an endangered butterfly, Parnassius mnemosyne, in Litovelské Pomoravíl. Czech Republic. J Insect Conserv. 1999;3:211–223. doi: 10.1023/A:1009641618795. DOI
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155–163. doi: 10.1016/j.jcm.2016.02.012. PubMed DOI PMC
Kőrösi Á, Örvössy N, Batáry P, Harnos A, Peregovits L. Different habitat selection by two sympatric Maculinea butterflies at small spatial scale. Insect Conserv Divers. 2012;5:118–126. doi: 10.1111/j.1752-4598.2011.00138.x. DOI
Kőrösi Á, Örvössy N, Batáry P, Kövér S, Peregovits L. Restricted within-habitat movement and time-constrained egg laying of female Maculinea rebeli butterflies. Oecologia. 2008;156:455–464. doi: 10.1007/s00442-008-0986-1. PubMed DOI
Kuefler D, Hudgens B, Haddad NM, Morris WF, Thurgate N. The conflicting role of matrix habitats as conduits and barriers for dispersal. Ecology. 2010;91:944–950. doi: 10.1890/09-0614.1. PubMed DOI
Kukla J, Holec M, Trögl J, Holcová D, Hofmanová D, Kuráň P, Popelka J, Pacina J, Křiženecká S, Usťak S, Honzík R. Tourist traffic significantly affects microbial communities of sandstone cave sediments in the protected landscape area “Labské Pískovce” (Czech Republic): implications for regulatory measures. Sustainability. 2018;10:396. doi: 10.3390/su10020396. DOI
Labbe TR, Fausch KD. Dynamics of intermittent stream habitat regulate persistence of a threatened fish at multiple scales. Ecol Appl. 2000;10:1774–1791. doi: 10.1890/1051-0761(2000)010[1774:DOISHR]2.0.CO;2. DOI
Legendre P, Legendre L. Numerical ecology, 3rd English ed. Amsterdam: Elsevier Science BV; 2012.
Le Roy C, Debat V, Llaurens V. Adaptive evolution of butterfly wing shape: from morphology to behaviour. Biol Rev. 2019;94:1261–1281. doi: 10.1111/brv.12500. PubMed DOI
Liljequist D, Elfving B, Skavberg Roaldsen K. Intraclass correlation – a discussion and demonstration of basic features. PLoS One. 2019;14:e0219854. doi: 10.1371/journal.pone.0219854. PubMed DOI PMC
Long ES, Diefenbach DR, Rosenberry CS, Wallingford BD, Grund MD. Forest cover influences dispersal distance of white-tailed deer. J Mammal. 2005;86:623–629. doi: 10.1644/1545-1542(2005)86[623:FCIDDO]2.0.CO;2. DOI
Lorenz MW. Oogenesis-flight syndrome in crickets: age-dependent egg production, flight performance, and biochemical composition of the flight muscles in adult female Gryllus bimaculatus. J Insect Physiol. 2007;53:819–832. doi: 10.1016/j.jinsphys.2007.03.011. PubMed DOI
Marden JH. Variability in the size, composition, and function of insect flight muscles. Annu Rev Physiol. 2000;62:157–178. doi: 10.1146/annurev.physiol.62.1.157. PubMed DOI
McIntire EJ, Schultz CB, Crone EE. Designing a network for butterfly habitat restoration: where individuals, populations and landscapes interact. J Appl Ecol. 2007;44:725–736. doi: 10.1111/j.1365-2664.2007.01326.x. DOI
Nowicki P, Vrabec V. Evidence for positive density-dependent emigration in butterfly metapopulations. Oecologia. 2011;167:657–665. doi: 10.1007/s00442-011-2025-x. PubMed DOI PMC
Nowicki P, Witek M, Skórka P, Settele J, Woyciechowski M. Population ecology of the endangered butterflies Maculinea teleius and M. nausithous and the implications for conservation. Popul Ecol. 2005;47:193–202. doi: 10.1007/s10144-005-0222-3. DOI
Nowicki P, Pepkowska A, Kudlek J, Skórka P, Witek M, Settele J, Woyciechowski M. From metapopulation theory to conservation recommendations: lessons from spatial occurrence and abundance patterns of Maculinea butterflies. Biol Conserv. 2007;140:119–129. doi: 10.1016/j.biocon.2007.08.001. DOI
Nowicki P, Vrabec V, Binzenhöfer B, Feil J, Zakšek B, Hovestadt T, Settele J. Butterfly dispersal in inhospitable matrix: rare, risky, but long-distance. Landsc Ecol. 2014;29:401–412. doi: 10.1007/s10980-013-9971-0. DOI
Öckinger E, Smith HG. Do corridors promote dispersal in grassland butterflies and other insects? Landsc Ecol. 2008;23:27–40. doi: 10.1007/s10980-007-9167-6. DOI
Painter KJ. Multiscale models for movement in oriented environments and their application to hilltopping in butterflies. Theor Ecol. 2014;7:53–75. doi: 10.1007/s12080-013-0198-0. DOI
Pe’er G, Heinz SK, Frank K. Connectivity in heterogeneous landscapes: analyzing the effect of topography. Landsc Ecol. 2006;21:47–61. doi: 10.1007/s10980-005-1622-7. DOI
Pe’er G, Kramer-Schadt S. Incorporating the perceptual range of animals into connectivity models. Ecol Model. 2008;213:73–85. doi: 10.1016/j.ecolmodel.2007.11.020. DOI
Pe’er G, Saltz D, Frank K. Virtual corridors for conservation management. Conserv Biol. 2005;19:1997–2003. doi: 10.1111/j.1523-1739.2005.00227.x. DOI
Pe’er G, Saltz D, Münkemüller T, Matsinos YG, Thulke HH. Simple rules for complex landscapes: the case of hilltopping movements and topography. Oikos. 2013;122:1483–1495. doi: 10.1111/j.1600-0706.2013.00198.x. DOI
Pe’er G, Saltz D, Thulke HH, Motro U. Response to topography in a hilltopping butterfly and implications for modelling nonrandom dispersal. Anim Behav. 2004;68:825–839. doi: 10.1016/j.anbehav.2004.02.006. DOI
Piaggio AJ, Navo KW, Stihler CW. Intraspecific comparison of population structure, genetic diversity, and dispersal among three subspecies of Townsend’s big-eared bats, Corynorhinus townsendii townsendii, C. t. pallescens, and the endangered C. t. virginianus. Conserv Genet. 2009;10:143–159. doi: 10.1007/s10592-008-9542-0. DOI
Plazio E, Margol T, Nowicki P. Intersexual differences in density-dependent dispersal and their evolutionary drivers. J Evol Biol. 2020. 10.1111/jeb.13688. PubMed
Ricketts TH. The matrix matters: effective isolation in fragmented landscapes. Am Nat. 2001;158:87–99. doi: 10.1086/320863. PubMed DOI
Roe JH, Brinton AC, Georges A. Temporal and spatial variation in landscape connectivity for a freshwater turtle in a temporally dynamic wetland system. Ecol Appl. 2009;19:1288–1299. doi: 10.1890/08-0101.1. PubMed DOI
Ronce O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst. 2007;38:231–253. doi: 10.1146/annurev.ecolsys.38.091206.095611. DOI
Schtickzelle N, Joiris A, van Dyke H, Baguette M. Quantitative analysis of changes in movement behaviour within and outside habitat in a specialised butterfly. BMC Evol Biol. 2007;7:4. doi: 10.1186/1471-2148-7-4. PubMed DOI PMC
Schtickzelle N, Mennechez G, Baguette M. Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology. 2006;87:1057–1065. doi: 10.1890/0012-9658(2006)87[1057:DDWHFI]2.0.CO;2. PubMed DOI
Schultz CB, Franco AM, Crone EE. Response of butterflies to structural and resource boundaries. J Anim Ecol. 2012;81:724–734. doi: 10.1111/j.1365-2656.2011.01947.x. PubMed DOI
Scott JA. Mate-locating behavior of butterflies. Am Midl Nat. 1974;91:103–117. doi: 10.2307/2424514. DOI
Severns PM, McIntire EJ, Schultz CB. Evaluating functional connectivity with matrix behavior uncertainty for an endangered butterfly. Landsc Ecol. 2013;28:559–569. doi: 10.1007/s10980-013-9860-6. DOI
Skórka P, Nowicki P, Lenda M, Witek M, Śliwińska EB, Settele J, Woyciechowski M. Different flight behaviour of the endangered scarce large blue butterfly Phengaris teleius (Lepidoptera: Lycaenidae) within and outside its habitat patches. Landsc Ecol. 2013;28:533–546. doi: 10.1007/s10980-013-9855-3. DOI
Srygley RB, Dudley R. Correlations of the position of center of body mass with butterfly escape tactics. J Exp Biol. 1993;174:155–166.
StatSoft . Statistica electronic manual. Version 13.0. Tulsa: StatSoft Inc., USA; 2015.
Sweaney N, Lindenmayer DB, Driscoll DA. Is the matrix important to butterflies in fragmented landscapes? J Insect Conserv. 2014;18:283–294. doi: 10.1007/s10841-014-9641-9. DOI
Thomas CD, Hill JK, Lewis OT. Evolutionary consequences of habitat fragmentation in a localized butterfly. J Anim Ecol. 1998;67:485–497. doi: 10.1046/j.1365-2656.1998.00213.x. DOI
Thomas JA. The behaviour and habitat requirements of Maculinea nausithous (the dusky large blue) and M. teleius (the scarce large blue) in France. Biol Conserv. 1984;28:325–347. doi: 10.1016/0006-3207(84)90040-5. DOI
Thomas JA, Settele J. Evolutionary biology: butterfly mimics of ants. Nature. 2004;432:283–284. doi: 10.1038/432283a. PubMed DOI
Timus N, Czekes Z, Rákosy L, Nowicki P. Conservation implications of source-sink dynamics within populations of endangered Maculinea butterflies. J Insect Conserv. 2017;21:369–378. doi: 10.1007/s10841-016-9906-6. DOI
Travis JMJ, French DR. Dispersal functions and spatial models: expanding our dispersal toolbox. Ecol Lett. 2000;3:163–165. doi: 10.1046/j.1461-0248.2000.00141.x. DOI
Turlure C, Baguette M, Stevens VM, Maes D. Species- and sex-specific adjustments of movement behavior to landscape heterogeneity in butterflies. Behav Ecol. 2011;22:967–975. doi: 10.1093/beheco/arr077. DOI
Van Dyck H, Regniers S. Egg spreading in the ant-parasitic butterfly, Maculinea alcon: from individual behaviour to egg distribution pattern. Anim Behav. 2010;80:621–627. doi: 10.1016/j.anbehav.2010.06.021. DOI
Van Swaay CAM, Cuttelod A, Collins S, Maes D, Munguira ML, Sasic M, Settele J, Verovnik R, Verstrael T, Warren MS, Wiemers M, Wynhoff I. European red list of butterflies. Luxembourg: Publications Office of the European Union; 2010.
Wahlberg N, Klemetti T, Selonen V, Hanski I. Metapopulation structure and movements in five species of checkerspot butterflies. Oecologia. 2002;130:33–43. doi: 10.1007/s004420100775. PubMed DOI
Wang IJ. Topographic path analysis for modelling dispersal and functional connectivity: calculating topographic distances using the topoDistance r package. Methods Ecol Evol. 2020;11:265–272. doi: 10.1111/2041-210X.13317. DOI
White GC, Burnham KP. Program MARK: survival estimation from populations of marked animals. Bird Stud. 1999;46:120–138. doi: 10.1080/00063659909477239. DOI
Wood PA, Samways MJ. Landscape element pattern and continuity of butterfly flight paths in an ecologically landscaped botanic garden, Natal, South Africa. Biol Conserv. 1991;58:149–166. doi: 10.1016/0006-3207(91)90117-R. DOI