A Combined Proteomics and Mendelian Randomization Approach to Investigate the Effects of Aspirin-Targeted Proteins on Colorectal Cancer
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
R01 CA067941
NCI NIH HHS - United States
U01 HG004438
NHGRI NIH HHS - United States
U01 HG004446
NHGRI NIH HHS - United States
K05 CA154337
NCI NIH HHS - United States
U01 CA164930
NCI NIH HHS - United States
R01 CA042182
NCI NIH HHS - United States
U01 CA067941
NCI NIH HHS - United States
R01 CA059045
NCI NIH HHS - United States
HHSN268201100001I
NHLBI NIH HHS - United States
R01 CA197350
NCI NIH HHS - United States
MC_UU_00011/4
Medical Research Council - United Kingdom
R01 CA076366
NCI NIH HHS - United States
R35 CA197735
NCI NIH HHS - United States
U10 CA037429
NCI NIH HHS - United States
MC_UU_12013/2
Medical Research Council - United Kingdom
R01 CA072520
NCI NIH HHS - United States
P01 CA087969
NCI NIH HHS - United States
P30 CA015704
NCI NIH HHS - United States
HHSN268201100004I
NHLBI NIH HHS - United States
P30 CA006973
NCI NIH HHS - United States
U24 CA074783
NCI NIH HHS - United States
19167
Cancer Research UK - United Kingdom
P01 CA055075
NCI NIH HHS - United States
S10 OD028685
NIH HHS - United States
R01 CA151993
NCI NIH HHS - United States
HHSN268201100046C
NHLBI NIH HHS - United States
P30 DK034987
NIDDK NIH HHS - United States
R01 CA048998
NCI NIH HHS - United States
U01 CA137088
NCI NIH HHS - United States
11975
Cancer Research UK - United Kingdom
R01 CA189184
NCI NIH HHS - United States
U01 CA167552
NCI NIH HHS - United States
HHSN268201100003C
WHI NIH HHS - United States
MC_UU_12013_2
Medical Research Council - United Kingdom
Z01 CP010200
Intramural NIH HHS - United States
U24 CA074794
NCI NIH HHS - United States
R01 CA066635
NCI NIH HHS - United States
R21 CA191312
NCI NIH HHS - United States
U01 CA206110
NCI NIH HHS - United States
HHSN268201200008C
NHLBI NIH HHS - United States
C18281/A19169
Cancer Research UK - United Kingdom
R01 CA137178
NCI NIH HHS - United States
U01 CA074794
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
U01 CA167551
NCI NIH HHS - United States
P30 CA076292
NCI NIH HHS - United States
29019
Cancer Research UK - United Kingdom
P30 CA014089
NCI NIH HHS - United States
R01 CA081488
NCI NIH HHS - United States
HHSN271201100004C
NIA NIH HHS - United States
R01 CA201407
NCI NIH HHS - United States
R01 CA063464
NCI NIH HHS - United States
P01 CA033619
NCI NIH HHS - United States
U01 CA086308
NCI NIH HHS - United States
UM1 CA186107
NCI NIH HHS - United States
HHSN268201100002C
WHI NIH HHS - United States
R01 CA207371
NCI NIH HHS - United States
R03 CA153323
NCI NIH HHS - United States
G1000143
Medical Research Council - United Kingdom
16561
Cancer Research UK - United Kingdom
T32 ES013678
NIEHS NIH HHS - United States
R01 CA136726
NCI NIH HHS - United States
P30 CA016058
NCI NIH HHS - United States
19169
Cancer Research UK - United Kingdom
UM1 CA167552
NCI NIH HHS - United States
K05 CA152715
NCI NIH HHS - United States
U01 CA122839
NCI NIH HHS - United States
Wellcome Trust - United Kingdom
HHSN268201100003I
NHLBI NIH HHS - United States
HHSN268201100002I
NHLBI NIH HHS - United States
U01 CA074783
NCI NIH HHS - United States
U01 CA084968
NCI NIH HHS - United States
KL2 TR000421
NCATS NIH HHS - United States
MR/R017247/1
Medical Research Council - United Kingdom
001
World Health Organization - International
P50 CA127003
NCI NIH HHS - United States
UM1 CA182883
NCI NIH HHS - United States
K07 CA190673
NCI NIH HHS - United States
HHSN268201200008I
NHLBI NIH HHS - United States
217487/Z/19/Z
Wellcome Trust - United Kingdom
U01 CA164973
NCI NIH HHS - United States
R37 CA054281
NCI NIH HHS - United States
HHSN268201100001C
WHI NIH HHS - United States
HHSN268201100004C
WHI NIH HHS - United States
R01 CA097325
NCI NIH HHS - United States
HHSN268201700006C
NHLBI NIH HHS - United States
U19 CA148107
NCI NIH HHS - United States
U01 AG018033
NIA NIH HHS - United States
PubMed
33318029
PubMed Central
PMC8086774
DOI
10.1158/1055-9965.epi-20-1176
PII: 1055-9965.EPI-20-1176
Knihovny.cz E-zdroje
- MeSH
- Aspirin farmakologie terapeutické užití MeSH
- kolorektální nádory farmakoterapie MeSH
- lidé MeSH
- mendelovská randomizace metody MeSH
- proteomika metody MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- Aspirin MeSH
BACKGROUND: Evidence for aspirin's chemopreventative properties on colorectal cancer (CRC) is substantial, but its mechanism of action is not well-understood. We combined a proteomic approach with Mendelian randomization (MR) to identify possible new aspirin targets that decrease CRC risk. METHODS: Human colorectal adenoma cells (RG/C2) were treated with aspirin (24 hours) and a stable isotope labeling with amino acids in cell culture (SILAC) based proteomics approach identified altered protein expression. Protein quantitative trait loci (pQTLs) from INTERVAL (N = 3,301) and expression QTLs (eQTLs) from the eQTLGen Consortium (N = 31,684) were used as genetic proxies for protein and mRNA expression levels. Two-sample MR of mRNA/protein expression on CRC risk was performed using eQTL/pQTL data combined with CRC genetic summary data from the Colon Cancer Family Registry (CCFR), Colorectal Transdisciplinary (CORECT), Genetics and Epidemiology of Colorectal Cancer (GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls). RESULTS: Altered expression was detected for 125/5886 proteins. Of these, aspirin decreased MCM6, RRM2, and ARFIP2 expression, and MR analysis showed that a standard deviation increase in mRNA/protein expression was associated with increased CRC risk (OR: 1.08, 95% CI, 1.03-1.13; OR: 3.33, 95% CI, 2.46-4.50; and OR: 1.15, 95% CI, 1.02-1.29, respectively). CONCLUSIONS: MCM6 and RRM2 are involved in DNA repair whereby reduced expression may lead to increased DNA aberrations and ultimately cancer cell death, whereas ARFIP2 is involved in actin cytoskeletal regulation, indicating a possible role in aspirin's reduction of metastasis. IMPACT: Our approach has shown how laboratory experiments and population-based approaches can combine to identify aspirin-targeted proteins possibly affecting CRC risk.
Behavioral and Epidemiology Research Group American Cancer Society Atlanta Georgia
Broad Institute of Harvard and MIT Cambridge Massachusetts
Cancer Epidemiology Division Cancer Council Victoria Melbourne Victoria Australia
Center for Public Health Genomics University of Virginia Charlottesville Virginia
CIBER Epidemiología y Salud Pública Madrid Spain
Clalit National Cancer Control Center Haifa Israel
Department of Clinical Genetics Karolinska University Hospital Stockholm Sweden
Department of Clinical Sciences Faculty of Medicine University of Barcelona Barcelona Spain
Department of Community Medicine and Epidemiology Lady Davis Carmel Medical Center Haifa Israel
Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore Maryland
Department of Epidemiology University of Washington School of Public Health Seattle Washington
Department of Family Medicine University of Virginia Charlottesville Virginia
Department of General Surgery University Hospital Rostock Rostock Germany
Department of Health Science Research Mayo Clinic Scottsdale Arizona
Department of Internal Medicine University of Utah Salt Lake City Utah
Department of Medicine Memorial Sloan Kettering Cancer Center New York New York
Department of Medicine University of North Carolina School of Medicine Chapel Hill North Carolina
Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden
Department of Preventive Medicine Chonnam National University Medical School Gwangju Korea
Department of Public Health and Primary Care University of Cambridge Cambridge United Kingdom
Department of Radiation Sciences Oncology Unit Umeå University Umeå Sweden
Department of Surgery Chonnam National University Hwasun Hospital and Medical School Hwasun Korea
Department of Surgical Sciences Uppsala University Uppsala Sweden
Discipline of Genetics Memorial University of Newfoundland St John's Canada
Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany
Division of Human Nutrition and Health Wageningen University and Research Wageningen the Netherlands
Division of Preventive Oncology German Cancer Research Center Heidelberg Germany
Division of Research Kaiser Permanente Northern California Oakland California
Faculty of Medicine and Biomedical Center in Pilsen Charles University Pilsen Czech Republic
Genetic Medicine and Family Cancer Clinic The Royal Melbourne Hospital Parkville Victoria Australia
German Cancer Consortium Heidelberg Germany
Institute of Cancer Research Department of Medicine 1 Medical University Vienna Vienna Austria
Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
Institute of Medical Biometry and Informatics University of Heidelberg Heidelberg Germany
Jeonnam Regional Cancer Center Chonnam National University Hwasun Hospital Hwasun Korea
Leeds Institute of Cancer and Pathology University of Leeds Leeds United Kingdom
ONCOBEL Program Bellvitge Biomedical Research Institute L'Hospitalet de Llobregat Barcelona Spain
Proteomics Facility Faculty of Life Sciences University of Bristol Bristol United Kingdom
Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle Washington
Ruth and Bruce Rappaport Faculty of Medicine Technion Israel Institute of Technology Haifa Israel
School of Cellular and Molecular Medicine University of Bristol Bristol United Kingdom
School of Public Health University of Washington Seattle Washington
University Medical Centre Hamburg Eppendorf University Cancer Centre Hamburg Hamburg Germany
University of Hawaii Cancer Center Honolulu Hawaii
University of Southern California Preventative Medicine Los Angeles California
Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
Zobrazit více v PubMed
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2018;68(6):394–424. PubMed
Qiao Y, Yang T, Gan Y, Li W, Wang C, Gong Y, et al. Associations between aspirin use and the risk of cancers: a meta-analysis of observational studies. BioMed Cent Cancer. 2018;18(1):1–57. PubMed PMC
Rothwell PM, Wilson M, Elwin CE, Norrving B, Algra A, Warlow CP, et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 2010;376(9754):1741–50. PubMed
Rothwell PM, Fowkes FGR, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: Analysis of individual patient data from randomised trials. Lancet. 2011;377(9759):31–41. PubMed
Cook NR, Lee I, Zhang SM, Moorthy MV, Buring JE. Alternate-Day, Low-Dose Aspirin and Cancer Risk: Long-Term Observational Follow-up of a Randomized Trial. Ann Intern Med. 2013;159(2):77–85. PubMed PMC
Sciulli MG, Filabozzi P, Tacconelli S, Padovano R, Ricciotti E, Capone ML, et al. Platelet activation in patients with colorectal cancer. Prostaglandins Leukot Essent Fat Acids. 2005;72(2):79–83. PubMed
Gurpinar E, Grizzle WE, Piazza GA. COX-independent mechanisms of cancer chemoprevention by anti-inflammatory drugs. 2013;3:181. PubMed PMC
Greenhough A, Smartt HJM, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30(3):377–86. PubMed
Alfonso L, Ai G, Spitale RC, Bhat GJ. Molecular targets of aspirin and cancer prevention. Br J Cancer. 2014;111(1):61–7. PubMed PMC
Bak AW, McKnight W, Li P, Del Soldato P, Calignano A, Cirino G, et al. Cyclooxygenase-independent chemoprevention with an aspirin derivative in a rat model of colonic adenocarcinoma. Life Sci. 1998;62(23):PL 367–373. PubMed
Yu H-G, Huang J-A, Yang Y-N, Huang H, Luo H-S, Yu J-P, et al. The effects of acetylsalicylic acid on proliferation, apoptosis, and invasion of cyclooxygenase-2 negative colon cancer cells. Eur J Clin Invest. 2002;32(11):838–46. PubMed
Yin H, Xu H, Zhao Y, Yang W, Cheng J, Zhou Y. Cyclooxygenase-independent effects of aspirin on HT-29 human colon cancer cells, revealed by oligonucleotide microarrays. Biotechnol Lett. 2006;28(16):1263–70. PubMed
Borthwick GM, Johnson AS, Partington M, Burn J, Wilson R, Arthur HM. Therapeutic levels of aspirin and salicylate directly inhibit a model of angiogenesis through a Cox- independent mechanism. FASEB J. 2006;20(12):2009–16. PubMed
Domingo E, Church DN, Sieber O, Ramamoorthy R, Yanagisawa Y, Johnstone E, et al. Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. J Clin Oncol. 2013;31(34):4297–305. PubMed
Reimers MS, Bastiaannet E, Langley RE, van Eijk R, van Vlierberghe RLP, Lemmens VEP, et al. Expression of HLA Class I Antigen, Aspirin Use, and Survival After a Diagnosis of Colon Cancer. JAMA Intern Med. 2014;174(5):732–9. PubMed
Drew DA, Cao Y, Chan AT. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat Rev Cancer. 2016;16:173–86. PubMed PMC
Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63. PubMed
Davey Smith G, Ebrahim S. What can Mendelian randomisation tell us about modifiable behavioural and environmental exposures? Br Med J. 2005;330(7499):1076–9. PubMed PMC
Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, et al. Genomic atlas of the human plasma proteome. Nature. 2018;558(7708):73–9. PubMed PMC
Võsa U, Claringbould A, Westra H-J, Jan Bonder M, Deelen P, Zeng B, et al. Unraveling the polygenic architecture of complex traits using blood eQTL meta-analysis. bioRxiv [Internet]. 2018; Available from: https://www.biorxiv.org/content/10.1101/447367v1 DOI
Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat Genet. 2020;52(10):1122–31. PubMed PMC
Cole BF, Logan RF, Halabi S, Benamouzig R, Sandler RS, Grainge MJ, et al. Aspirin for the chemoprevention of colorectal adenomas: Meta-analysis of the randomized trials. Vol. 101, Journal of the National Cancer Institute. 2009. p. 256–66. PubMed PMC
Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D. Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer. 2009;9(7):489–99. PubMed
Paraskeva C, Finerty S, Mountford RA, Powell SC. Specific cytogenetic abnormalities in two new human colorectal adenoma-derived epithelial cell lines. Cancer Res. 1989;49(5):1282–6. PubMed
Browne SJ, Williams AC, Hague A, Butt AJ, Paraskeva C. Loss of APC protein expressed by human colonic epithelial cells and the appearance of a specific low-molecular-weight form is associated with apoptosis in vitro. Int J Cancer. 1994;59(1):56–64. PubMed
Greenhough A, Wallam CA, Hicks DJ, Moorghen M, Williams AC, Paraskeva C. The proapoptotic BH3-only protein Bim is downregulated in a subset of colorectal cancers and is repressed by antiapoptotic COX-2/PGE 2 signalling in colorectal adenoma cells. Oncogene. 2010;29(23):3398–410. PubMed PMC
Baker SJ, Preisinger AC, Jessup JM, Paraskeva C, Markowitz S, Willson JK V, et al. P53 Gene Mutations Occur in Combination With 17P Allelic Deletions As Late Events in Colorectal Tumorigenesis. Cancer Res. 1990;50(23):7717–22. PubMed
Trinkle-Mulcahy L, Boulon S, Lam YW, Urcia R, Boisvert F-M, Vandermoere F, et al. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J Cell Biol. 2008;183(2):223–39. PubMed PMC
Greenhough A, Bagley C, Heesom KJ, Gurevich DB, Gay D, Bond M, et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis. EMBO Mol Med. 2018;10(9):e8699. PubMed PMC
Yang W, Chung YG, Kim Y, Kim T-K, Keay SK, Zhang C-O, et al. Quantitative proteomics identifies a beta-catenin network as an element of the signaling response to Frizzled-8 protein-related antiproliferative factor. Mol Cell Proteomics. 2011;10(6):M110.007492. PubMed PMC
Di Angelantonio E, Thompson SG, Kaptoge S, Moore C, Walker M, Armitage J, et al. Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45000 donors. Lancet. 2017;390(10110):2360–71. PubMed PMC
Sinclair JK, Taylor PJ, Hobbs SJ. Alpha Level Adjustments for Multiple Dependent Variable Analyses and Their Applicability – A Review. Int J Sport Sci Eng. 2013;07(01):17–20.
Larson NB, Mcdonnell S, French AJ, Fogarty Z, Cheville J, Middha S, et al. Comprehensively Evaluating cis-Regulatory Variation in the Human Prostate Transcriptome by Using Gene-Level Allele-Specific Expression. Am J Hum Genet. 2015;96(6):869–82. PubMed PMC
Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet. 2019;51(1):76–87. PubMed PMC
Schumacher FR, Schmit SL, Jiao S, Edlund CK, Wang H, Zhang B, et al. Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nat Commun. 2015;6:7138. PubMed PMC
Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9. PubMed PMC
Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408. PubMed PMC
Burgess S, Butterworth A, Thompson SG. Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data. Genet Epidemiol. 2013;37(7):658–65. PubMed PMC
Slob EAW, Burgess S. A Comparison Of Robust Mendelian Randomization Methods Using Summary Data. Genet Epidemiol. 2020;44(4):313–29. PubMed PMC
Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98. PubMed PMC
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 2016;40(4):304–14. PubMed PMC
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25. PubMed PMC
Huang J, Luo H-L, Pan H, Qiu C, Hao T-F, Zhu Z-M. Interaction between RAD51 and MCM complex is essential for RAD51 foci forming in colon cancer HCT116 cells. Biochem. 2018;83(1):69–75. PubMed
Chen CW, Li Y, Hu S, Zhou W, Meng Y, Li Z, et al. DHS (trans−4,4′-dihydroxystilbene) suppresses DNA replication and tumor growth by inhibiting RRM2 (ribonucleotide reductase regulatory subunit M2). Oncogene. 2018;38(13):2364–79. PubMed PMC
Li XL, Zhou J, Chen ZR, Chng WJ. P53 mutations in colorectal cancer- molecular pathogenesis and pharmacological reactivation. World J Gastroenterol. 2015;21(1):84–93. PubMed PMC
Brown JS, O’Carrigan B, Jackson SP, Yap TA. Targeting DNA repair in cancer: Beyond PARP inhibitors. Cancer Discov. 2017;7(1):20–37. PubMed PMC
Hosoya N, Miyagawa K. Targeting DNA damage response in cancer therapy. Cancer Sci. 2014;105(4):370–88. PubMed PMC
Ashworth A A synthetic lethal therapeutic approach: Poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26(22):3785–90. PubMed
D’Souza-Schorey CL Boshans R, McDonough M, D.Stahl P, Van Aelst L. A role for POR1, a Rac1‐interacting protein, in ARF6‐mediated cytoskeletal rearrangements. EMBO J. 1997;16(17):5445–54. PubMed PMC
Fife CM, McCarroll JA, Kavallaris M. Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol. 2014;171(24):5507–23. PubMed PMC
Rothwell PM, Wilson M, Price JF, Belch JFF, Meade TW, Mehta Z. Effect of daily aspirin on risk of cancer metastasis: A study of incident cancers during randomised controlled trials. Lancet. 2012;379(9826):1591–601. PubMed
Benamouzig R, Uzzan B, Deyra J, Martin A, Girard B, Little J, et al. Prevention by daily soluble aspirin of colorectal adenoma recurrence: 4-Year results of the APACC randomised trial. Gut. 2012;61(2):255–61. PubMed
Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, et al. A Randomized Trial of Aspirin to Prevent Colorectal Adenomas. N Engl J Med. 2003;348(10):891–9. PubMed
Yao C, Joehanes R, Johnson AD, Huan T, Liu C, Freedman JE, et al. Dynamic Role of trans Regulation of Gene Expression in Relation to Complex Traits. Am J Hum Genet. 2017;100(4):571–80. PubMed PMC
Wu L, Candille SI, Choi Y, Xie D, Jiang L, Li-pook-than J, et al. Variation and genetic control of proteins in humans. Nature. 2013;499(7456):79–82. PubMed PMC
Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, et al. Impact of regulatory variation from RNA to protein. Science (80- ). 2015;347(6222):664–7. PubMed PMC
Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–13. PubMed PMC
Yarmolinsky J, Bull CJ, Vincent EE, Robinson J, Walther A, Smith GD, et al. Association Between Genetically Proxied Inhibition of HMG-CoA Reductase and Epithelial Ovarian Cancer. JAMA. 2020;323(7):646–55. PubMed PMC
Benn M, Nordestgaard BG, Frikke-schmidt R, Tybjærg-Hansen A. Low LDL cholesterol, PCSK9 and HMGCR genetic variation, and risk of Alzheimer’s disease and Parkinson’s disease: Mendelian randomisation study. BMJ. 2017;357:j3170. PubMed PMC
Ference BA, Majeed F, Penumetcha R, Flack JM, Brook RD. Effect of Naturally Random Allocation to Lower Low-Density Lipoprotein Cholesterol on the Risk of Coronary Heart Disease Mediated by Polymorphisms in NPC1L1, HMGCR,or Both: A 2 × 2 Factorial Mendelian Randomization Study. J Am Coll Cardiol. 2015;65(15):1552–61. PubMed PMC