Determination of Mercury in Fish Sauces by Thermal Decomposition Gold Amalgamation Atomic Absorption Spectroscopy after Preconcentration by Diffusive Gradients in Thin Films Technique
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
REG LO1211
Ministry of Education, Youth and Sports of Czech Republic
PubMed
33322820
PubMed Central
PMC7764611
DOI
10.3390/foods9121858
PII: foods9121858
Knihovny.cz E-zdroje
- Klíčová slova
- atomic absorption spectroscopy, diffusive gradients in thin films, extraction, fish sauce, mercury, preconcentration,
- Publikační typ
- časopisecké články MeSH
The analysis of mercury in food presents a challenge for analytical chemists. Sample pre-treatment and the preconcentration of mercury prior to measurement are required, even when highly sensitive analytical methods are used. In this work, the Diffusive Gradients in Thin Films technique (DGT), combined with thermal decomposition gold amalgamation atomic absorption spectrometry (TDA-AAS), was investigated for the determination of the total dissolved mercury in fish sauces. Moreover, a new type of binding gel with Purolite S924 resin was used in DGT. Linearity assays for DGT provided determination coefficients around 0.995. Repeatability tests showed a relative standard deviation of less than 10%. pH values in the range of 3-6, as well as NaCl concentrations up to 50 g·L-1, did not affect the performance of DGT. The effective diffusion coefficient of mercury in five-fold diluted fish sauce was determined to be (3.42 ± 0.23)·10-6 cm2·s-1. Based on the 24 h deployment time of DGT, the limit of detection (LOD) for the investigated method was 0.071 µg·L-1. The proposed method, which combines DGT and TDA-AAS, allows for the analysis of fish sauces with mercury concentrations below the LOD of TDA-AAS, and significantly reduces the wear and corrosion of the TDA-AAS components.
Zobrazit více v PubMed
Lopetcharat K., Choi Y.J., Park J.W., Daeschel M.A. Fish sauce products and manufacturing: A review. Food Rev. Int. 2001;17:65–88. doi: 10.1081/FRI-100000515. DOI
Park J.-N., Fukumoto Y., Fujita E., Tanaka T., Washio T., Otsuka S., Shimizu T., Watanabe K., Abe H. Chemical composition of fish sauces produced in Southeast and East Asian countries. J. Food Compos. Anal. 2001;14:113–125. doi: 10.1006/jfca.2000.0963. DOI
Nakano M., Sagane Y., Koizumi R., Nakazawa Y., Yamazaki M., Watanabe T., Takano K., Sato H. Data on the chemical properties of commercial fish sauce products. Data Brief. 2017;15:658–664. doi: 10.1016/j.dib.2017.10.022. PubMed DOI PMC
Bernhoft R.A. Mercury toxicity and treatment: A review of the literature. J. Environ. Public Health. 2011;2012:1–10. doi: 10.1155/2012/460508. PubMed DOI PMC
European Commission Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union. 2006 Dec 19;L 364:5–24.
Gao Y., Shi Z., Long Z., Wu P., Zheng C., Hou X. Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchem. J. 2012;103:1–14. doi: 10.1016/j.microc.2012.02.001. DOI
Costley C.T., Mossop K.F., Dean J.R., Garden L.M., Marshall J., Carroll J. Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation. Anal. Chim. Acta. 2000;405:179–183. doi: 10.1016/S0003-2670(99)00742-4. DOI
Leopold K., Foulkes M., Worsfold P. Methods for the determination and speciation of mercury in natural waters—A review. Anal. Chim. Acta. 2010;663:127–138. doi: 10.1016/j.aca.2010.01.048. PubMed DOI
Kallithrakas-Kontos N., Foteinis S. Recent advances in the analysis of mercury in water-review. Curr. Anal. Chem. 2015;12:22–36. doi: 10.2174/157341101201151007120324. DOI
Davison W., Zhang H. In situ speciation measurements of trace components in natural waters using thin-film gels. Nat. Cell Biol. 1994;367:546–548. doi: 10.1038/367546a0. DOI
Zhang H., Davison W. Performance characteristics of Diffusion Gradients in Thin Films for the in situ measurement of trace metals in aqueous solution. Anal. Chem. 1995;67:3391–3400. doi: 10.1021/ac00115a005. DOI
Divis P., Docekalova H., Smetkova V. Gel techniques for in situ measurement in natural waters, soils and sediments. Chem. Listy. 2005;99:640–646.
Pelfrêne A., Waterlot C., Douay F. Investigation of DGT as a metal speciation tool in artificial human gastrointestinal fluids. Anal. Chim. Acta. 2011;699:177–186. doi: 10.1016/j.aca.2011.05.024. PubMed DOI
Chen H., Guo L., Zhang M., Gu J., Zhong K., Bo L., Li J. Determination of lead in soybean sauces by the Diffusive Gradients in Thin Films technique. Food Chem. 2014;165:9–13. doi: 10.1016/j.foodchem.2014.05.105. PubMed DOI
Garmo Ø.A., Røyset O., Steinnes E., Flaten T.P. Performance study of Diffusive Gradients in Thin Films for 55 elements. Anal. Chem. 2003;75:3573–3580. doi: 10.1021/ac026374n. PubMed DOI
Docekalová H., Diviš P. Application of Diffusive Gradient in Thin Films technique (DGT) to measurement of mercury in aquatic systems. Talanta. 2005;65:1174–1178. doi: 10.1016/j.talanta.2004.08.054. PubMed DOI
Diviš P., Szkandera R., Dočekalová H. Characterization of sorption gels used for determination of mercury in aquatic environment by Diffusive Gradients in Thin Films technique. Open Chem. 2010;8:1105–1109. doi: 10.2478/s11532-010-0090-3. DOI
Fernández-Gómez C., Dimock B., Hintelmann H., Díez S. Development of the DGT technique for Hg measurement in water: Comparison of three different types of samplers in laboratory assays. Chemosphere. 2011;85:1452–1457. doi: 10.1016/j.chemosphere.2011.07.080. PubMed DOI
Gao Y.Y., De Canck E., Leermakers M., Baeyens W., Van Der Voort P. Synthesized mercaptopropyl nanoporous resins in DGT probes for determining dissolved mercury concentrations. Talanta. 2011;87:262–267. doi: 10.1016/j.talanta.2011.10.012. PubMed DOI
Hong Y.S., Rifkin E., Bouwer E.J. Combination of Diffusive Gradient in a Thin Film probe and IC-ICP-MS for the simultaneous determination of CH3Hg+and Hg2+ in oxic water. Environ. Sci. Technol. 2011;45:6429–6436. doi: 10.1021/es200398d. PubMed DOI
Szkandera R., Docekalova H., Kadlecova M., Travnickova J., Divis P. A sorption gel with titanium dioxide for mercury determination by the Diffusion Gradient in Thin Film. Chem. Listy. 2013;107:160–164.
Hlodák M., Matúš P., Urík M., Nemček L., Mikušová P., Senila M., Diviš P. Evaluation of various inorganic and biological extraction techniques suitability for soil mercury phytoavailable fraction assessment. Water Air Soil Pollut. 2015;226 doi: 10.1007/s11270-015-2458-7. DOI
Száková J., Kolihová D., Miholová D., Mader P. Single-purpose atomic absorption spectrometer AMA-254 for mercury determination and its performance in analysis of agricultural and environmental materials. Chem. Pap. 2004;58:311–315.
Abdulbur-Alfakhoury E., Van Zutphen S., Leermakers M. Development of the Diffusive Gradients in Thin Films technique (DGT) for platinum (Pt), palladium (Pd), and rhodium (Rh) in natural waters. Talanta. 2019;203:34–48. doi: 10.1016/j.talanta.2019.05.038. PubMed DOI
Warnken K.W., Zhang H., Davison W. Accuracy of the Diffusive Gradients in Thin-Films technique: Diffusive boundary layer and effective sampling area considerations. Anal. Chem. 2006;78:3780–3787. doi: 10.1021/ac060139d. PubMed DOI
Różański S.Ł., Castejón J.M.P., Fernández G.G. Bioavailability and mobility of mercury in selected soil profiles. Environ. Earth Sci. 2016;75 doi: 10.1007/s12665-016-5863-3. DOI
Čelechovská O., Svobodová Z., Zlabek V., Macharáčková B. Distribution of metals in tissues of the Common Carp (Cyprinus carpio L.) Acta Veter-Brno. 2007;76:S93–S100. doi: 10.2754/avb200776S8S093. DOI
Durrieu G., Maury-Brachet R., Girardin M., Rochard E., Boudou A. Contamination by heavy metals (Cd, Zn, Cu, and Hg) of eight fish species in the Gironde estuary (France) Estuaries. 2005;28:581–591. doi: 10.1007/BF02696069. DOI
Gao Y.Y., De Galan S., De Brauwere A., Baeyens W., Leermakers M. Mercury speciation in hair by headspace injection–gas chromatography–atomic fluorescence spectrometry (methylmercury) and combustion-atomic absorption spectrometry (total Hg) Talanta. 2010;82:1919–1923. doi: 10.1016/j.talanta.2010.08.012. PubMed DOI
Reichstädter M., Divis P., Abdulbur-Alfakhoury E., Gao Y. Simultaneous determination of mercury, cadmium and lead in fish sauce using Diffusive Gradients in Thin-Films technique. Talanta. 2020;217:121059. doi: 10.1016/j.talanta.2020.121059. PubMed DOI
European Union Commission Decision (2002/657/EC) of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Union. 2002;L221:8–36.
Garmo Ø.A., Naqvi K.R., Røyset O., Steinnes E. Estimation of diffusive boundary layer thickness in studies involving diffusive gradients in thin films (DGT) Anal. Bioanal. Chem. 2006;386:2233–2237. doi: 10.1007/s00216-006-0885-4. PubMed DOI
Luo J., Zhang H., Santner J., Davison W. Performance characteristics of Diffusive Gradients in Thin Films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(V), selenium(VI), vanadium(V), and antimony(V) Anal. Chem. 2010;82:8903–8909. doi: 10.1021/ac101676w. PubMed DOI
Panther J.G., Bennett W.W., Teasdale P.R., Welsh D.T., Zhao H. DGT Measurement of dissolved aluminum species in waters: Comparing Chelex-100 and Titanium dioxide-based adsorbents. Environ. Sci. Technol. 2012;46:2267–2275. doi: 10.1021/es203674n. PubMed DOI
Atzei D., Ferri T., Sadun C., Sangiorgio P., Caminiti R. Structural characterization of complexes between iminodiacetate blocked on Styrene−Divinylbenzene matrix (Chelex 100 Resin) and Fe(III), Cr(III), and Zn(II) in Solid Phase by Energy-Dispersive X-ray Diffraction. J. Am. Chem. Soc. 2001;123:2552–2558. doi: 10.1021/ja0003728. PubMed DOI
Gimpel J., Zhang H., Hutchinson W., Davison W. Effect of solution composition, flow and deployment time on the measurement of trace metals by the Diffusive Gradient in Thin Films technique. Anal. Chim. Acta. 2001;448:93–103. doi: 10.1016/S0003-2670(01)01323-X. DOI
Pelcová P., Dočekalová H., Kleckerova A. Determination of mercury species by the Diffusive Gradient in Thin Film technique and liquid chromatography–atomic fluorescence spectrometry after microwave extraction. Anal. Chim. Acta. 2015;866:21–26. doi: 10.1016/j.aca.2015.01.043. PubMed DOI
Reichstädter M., Gao Y., Diviš P., Ma T., Gaulier C., Leermakers M. Cysteine-modified silica resin in DGT samplers for mercury and trace metals assessment. Chemosphere. 2020;263:128320. doi: 10.1016/j.chemosphere.2020.128320. PubMed DOI
Mabesa R.C., Atutubo E.O., Bandian V.T. Safety evaluation of fermented fish and shellfish products III. Heavy metal contaminants. Philipp. J. Sci. 1985;114:125–131.
Funatsu Y., Kawasaki K., Matsunaga A., Konagaya S. The contents of polamines and heavy metals in fish sauce made from frigate mackerel. Nippon. Suisan Gakkaishi. 2001;67:306–307. doi: 10.2331/suisan.67.306. DOI
Dee K.H., Abdullah F., Md Nasir S.N.A., Appalasamy S., Ghazi R.M., Rak A.E. Health risk assessment of heavy metals from smoked Corbicula fluminea collected on Roadside Vendors at Kelantan, Malaysia. BioMed Res. Int. 2019;2019:1–9. doi: 10.1155/2019/9596810. PubMed DOI PMC
Ariano A., Marrone R., Andreini R., Smaldone G., Velotto S., Montagnaro S., Anastasio A., Severino L. Metal concentration in muscle and digestive gland of Common Octopus (Octopus vulgaris) from two coastal site in Southern Tyrrhenian Sea (Italy) Molecules. 2019;24:2401. doi: 10.3390/molecules24132401. PubMed DOI PMC