Increasing the Accuracy of Free-Form Surface Multiaxis Milling

. 2020 Dec 23 ; 14 (1) : . [epub] 20201223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33374664

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407 Innovative and additive manufacturing technology - new technological solutions for 3D printing of metals and composite materials

This contribution deals with the accuracy of machining during free-form surface milling using various technologies. The contribution analyzes the accuracy and surface roughness of machined experimental samples using 3-axis, 3 + 2-axis, and 5-axis milling. Experimentation is focusing on the tool axis inclination angle-it is the position of the tool axis relative to the workpiece. When comparing machining accuracy during 3-axis, 3 + 2-axis, and 5-axis milling the highest accuracy (deviation ranging from 0 to 17 μm) was achieved with 5-axis simultaneous milling (inclination angles βf = 10 to 15°, βn = 10 to 15°). This contribution is also enriched by comparing a CAD (Computer Aided Design) model with the prediction of milled surface errors in the CAM (Computer Aided Manufacturing) system. This allows us to determine the size of the deviations of the calculated surfaces before the machining process. This prediction is analyzed with real measured deviations on a shaped surface-using optical three-dimensional microscope Alicona Infinite Focus G5.

Zobrazit více v PubMed

Yüncüoğlu E.U., Bağci E. The Effects of Milling Strategies on Forces, Material Removal Rate, Tool Deflection, and Surface Errors for the Rough Machining of Complex Surfaces. J. Mech. Eng. 2017;63:643–656. doi: 10.5545/sv-jme.2017.4450. DOI

Sadílek M. Výzkum Změny Polohy Osy Nástroje Při Víceosém Frézování/Research of Position Tool Change in Multi-Axis Milling. VSB-Technical University of Ostrava, Faculty of Mechanical Engineering; Ostrava, Czech Republic: 2012. p. 150. Habilitation Work. app. 1.3.

Bouzakis K.-D., Aichouh P., Efstathiou K. Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling, with ball end tools. Int. J. Mach. Tools Manuf. 2003;43:499–514. doi: 10.1016/S0890-6955(02)00265-1. DOI

Kua B.W., Tanaka H., Obata F., Sakamoto S. Prediction of cutting forces and machining error in ball end milling of curved surfaces—I theoretical analysis. Precis. Eng. 2001;25:266–273. doi: 10.1016/s0141-6359(01)00077-0. DOI

Imani B.M., Sadeghi M., Elbestawi M. An improved process simulation system for ball-end milling of sculptured surfaces. Int. J. Mach. Tools Manuf. 1998;38:1089–1107. doi: 10.1016/S0890-6955(97)00074-6. DOI

Kim G.M., Chu C.N. Mean cutting force prediction in ball-end milling using force map method. J. Mater. Process. Technol. 2004;146:303–310. doi: 10.1016/j.jmatprotec.2003.11.021. DOI

Kim G., Cho P., Chu C.N. Cutting force prediction of sculptured surface ball-end milling using Z-map. Int. J. Mach. Tools Manuf. 2000;40:277–291. doi: 10.1016/S0890-6955(99)00040-1. DOI

Schulz H., Hock S. High-Speed Milling of Dies and Moulds—Cutting Conditions and Technology. CIRP Ann. 1995;44:35–38. doi: 10.1016/S0007-8506(07)62270-7. DOI

Ko T.J., Kim H.S., Lee S.S. Selection of the Machining Inclination Angle in High-Speed Ball End Milling. Int. J. Adv. Manuf. Technol. 2001;17:163–170. doi: 10.1007/PL00003943. DOI

Mizugaki Y., Hao M., Kikkawa K., Nakagawa T. Geometric Generating Mechanism of Machined Surface by Ball-nosed End Milling. CIRP Ann. 2001;50:69–72. doi: 10.1016/S0007-8506(07)62073-3. DOI

Mizugaki Y., Kikkawa K., Terai H., Hao M., Sata T. Theoretical Estimation of Machined Surface Profile Based on Cutting Edge Movement and Tool Orientation in Ball-nosed End Milling. CIRP Ann. 2003;52:49–52. doi: 10.1016/S0007-8506(07)60528-9. DOI

Toh C. Surface topography analysis in high speed finish milling inclined hardened steel. Precis. Eng. 2004;28:386–398. doi: 10.1016/j.precisioneng.2004.01.001. DOI

Kim G., Kim B., Chu C. Estimation of cutter deflection and form error in ball-end milling processes. Int. J. Mach. Tools Manuf. 2003;43:917–924. doi: 10.1016/S0890-6955(03)00056-7. DOI

Sadílek M., Cep R., Budak I., Soković M. Aspects of Using Tool Axis Inclination Angle. Stroj. Vestn. 2011;57:681–688. doi: 10.5545/sv-jme.2010.205. DOI

Lee C.M., Kim S.W., Lee Y.H., Lee D.W. The optimal cutter orientation in ball end milling of cantilever-shaped thin plate. J. Mater. Process. Technol. 2004;153:900–906. doi: 10.1016/j.jmatprotec.2004.04.106. DOI

Krolczyk G., Gajek M., Legutko S. Predicting the tool life in the dry machining of duplex stainless steel. Eksploat. i Niezawodn. Maint. Reliab. 2013;15:62–65.

Królczyk G., Legutko S., Stoić A. Influence of cutting parameters and conditions onto surface hardness of duplex stainless steel after turning process. Teh. Vjesn. Tech. Gaz. 2013;20:1077–1080.

Kita Y., Furuike H., Kakino Y., Nakagawa H., Hirogaki T. Basic study of ball end milling on hardened steel. J. Mater. Process. Technol. 2001;111:240–243. doi: 10.1016/S0924-0136(01)00526-X. DOI

Lim E.M., Menq C.-H. Integrated planning for precision machining of complex surfaces. Part 1: Cutting-path and feedrate optimization. Int. J. Mach. Tools Manuf. 1997;37:61–75. doi: 10.1016/0890-6955(95)00109-3. DOI

Wei Z.C., Wang M.J., Cai Y.J., Zhu J.N., Wang L. Form error estimation in ball-end milling of sculptured surface with z-level contouring tool path. Int. J. Adv. Manuf. Technol. 2012;65:363–369. doi: 10.1007/s00170-012-4175-3. DOI

Pagáč M., Malotová Š., Sadílek M., Petrů J., Zlámal T., Kratochvíl J. Influence of effective milling strategies on the residual stress; Proceedings of the Metal 2016: 25th Anniversary International Conference on Metallurgy and Materials; Brno, Czech Republic. 25–27 May 2016; pp. 819–824.

Sadílek M., Fojtík F., Sadílková Z., Kolařík K., Petrů J. Study of Effects of Changing the Position of the Tool Axis to the Machined Surface. Trans. Famena. 2015;39:33–46.

Sadílek M., Kousal L., Náprstková N., Szotkowski T., Hajnyš J. The Analysis of Accuracy of Machined Surfaces and Surfaces Roughness after 3axis and 5axis Milling. Manuf. Technol. 2018;18:1015–1022. doi: 10.21062/ujep/217.2018/a/1213-2489/MT/18/6/1015. DOI

Zelinka J., Sadílek M., Szkandera P., Mizera O., Čepová L. The Surface Roughness of The Machined Surface of Multiaxial Milling; Proceedings of the Metal 2019 Conference Proeedings; Brno, Czech Republic. 22–24 May 2019; pp. 1197–1202.

Peterka J. Nový přístup výpočtu střední aritmetické odchylky drsnosti obrobeného povrchu při kopírovacím frézováním/A new approach of calculating the arithmetical mean deviation of roughness of the machined surface at the free form surface milling. Strojírenská Technol. Manuf. Technol. 2004;9:28–32.

ISO 25178-1:2016 . Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 1: Indication of Surface Texture. ISO; Geneve, Switzerland: 2016. p. 40. Classification character 014451.

EN ISO 25178-2:2012 . Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. ISO; Geneve, Switzerland: 2012. p. 52. Classification character 014451.

Adamczak S., Miko E., Čuš F. A model of surface roughness constitution in the metal cutting process applying tools with defined stereometry. Stroj. Vestn. J. Mech. Eng. 2009;55:45–54.

Čep R., Janásek A., Martinický B., Sadílek M. Cutting tool life tests of ceramic inserts for car engine sleeves. Teh. Vjesn. Tech. Gaz. 2011;18:203–209.

Bujok P., Chistyakov V., Klempa M., Straupnik I. Efficiency analyze Borehole Heat Exchangers (BHEs) of the research geothermal polygon placed at VŠB-Technical University of Ostrava. Renew. Energy Power Qual. J. 2012:697–700. doi: 10.24084/repqj10.437. DOI

Chen J.-S., Huang Y.-K., Chen M.-S. A study of the surface scallop generating mechanism in the ball-end milling process. Int. J. Mach. Tools Manuf. 2005;45:1077–1084. doi: 10.1016/j.ijmachtools.2004.11.019. DOI

Ungureanu N.S. Fiabilitatea si Diagnoza / Reliability and Diagnosis. Editura Risoprint; Cluj Napoca, Romania: 2003.

Čep R., Janásek A., Čepová L., Petrů J., Hlavatý I., Car Z., Hatala M. Experimental testing of exchangeable cutting inserts cutting ability / Eksperimentalno ispitivanje rezne sposobnosti izmjenjivih reznih umetaka. Teh. Vjesn. Tech. Gaz. 2013;20:21–26.

Kurt M., Bagci E. Feedrate optimisation/scheduling on sculptured surface machining: A comprehensive review, applications and future directions. Int. J. Adv. Manuf. Technol. 2011;55:1037–1067. doi: 10.1007/s00170-010-3131-3. DOI

Production W. Chip Fragmentation in the Milling of AZ91HP Magnesium Alloy. Stroj. Vestn. 2017;63:628–642. doi: 10.5545/sv-jme.2017.4406. DOI

Scandiffio I., Diniz A.E., De Souza A.F. The influence of tool-surface contact on tool life and surface roughness when milling free-form geometries in hardened steel. Int. J. Adv. Manuf. Technol. 2017;92:615–626. doi: 10.1007/s00170-017-0093-8. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

An Experimental Investigation into Trochoidal Milling for High-Quality GFRP Machining

. 2025 Apr 05 ; 18 (7) : . [epub] 20250405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...