• This record comes from PubMed

Modulation of Aub-TDRD interactions elucidates piRNA amplification and germplasm formation

. 2021 Mar ; 4 (3) : . [epub] 20201229

Language English Country United States Media electronic-print

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural

Grant support
R01 GM106047 NIGMS NIH HHS - United States
R01 GM123512 NIGMS NIH HHS - United States

Aub guided by piRNAs ensures genome integrity by cleaving retrotransposons, and genome propagation by trapping mRNAs to form the germplasm that instructs germ cell formation. Arginines at the N-terminus of Aub (Aub-NTRs) interact with Tudor and other Tudor domain-containing proteins (TDRDs). Aub-TDRD interactions suppress active retrotransposons via piRNA amplification and form germplasm via generation of Aub-Tudor ribonucleoproteins. Here, we show that Aub-NTRs are dispensable for primary piRNA biogenesis but essential for piRNA amplification and that their symmetric dimethylation is required for germplasm formation and germ cell specification but largely redundant for piRNA amplification.

See more in PubMed

Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD (2019) PIWI-interacting RNAs: Small RNAs with big functions. Nat Rev Genet 20: 89–108. 10.1038/s41576-018-0073-3 PubMed DOI

Sarot E, Payen-Groschêne G, Bucheton A, Pélisson A (2004) Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics 166: 1313–1321. 10.1534/genetics.166.3.1313 PubMed DOI PMC

Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318: 761–764. 10.1126/science.1146484 PubMed DOI

Lewis SH, Quarles KA, Yang Y, Tanguy M, Frézal L, Smith SA, Sharma PP, Cordaux R, Gilbert C, Giraud I, et al. (2018) Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat Ecol Evol 2: 174–181. 10.1038/s41559-017-0403-4 PubMed DOI PMC

Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z (2009) Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol 11: 652–658. 10.1038/ncb1872 PubMed DOI PMC

Gonsalvez GB, Rajendra TK, Tian L, Matera AG (2006) The Sm-protein methyltransferase, dart5, is essential for germ-cell specification and maintenance. Curr Biol 16: 1077–1089. 10.1016/j.cub.2006.04.037 PubMed DOI

Anne J, Ollo R, Ephrussi A, Mechler BM (2007) Arginine methyltransferase Capsuleen is essential for methylation of spliceosomal Sm proteins and germ cell formation in Drosophila. Development 134: 137–146. 10.1242/dev.02687 PubMed DOI

Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y, Inagaki S, Huang H, Chen D, Kodama T, Siomi H, et al. (2009) Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J 28: 3820–3831. 10.1038/emboj.2009.365 PubMed DOI PMC

Kirino Y, Vourekas A, Sayed N, de Lima Alves F, Thomson T, Lasko P, Rappsilber J, Jongens TA, Mourelatos Z (2010) Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA 16: 70–78. 10.1261/rna.1869710 PubMed DOI PMC

Siomi MC, Mannen T, Siomi H (2010) How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev 24: 636–646. 10.1101/gad.1899210 PubMed DOI PMC

Chen C, Nott TJ, Jin J, Pawson T (2011) Deciphering arginine methylation: Tudor tells the tale. Nat Rev Mol Cell Biol 12: 629–642. 10.1038/nrm3185 PubMed DOI

Honda S, Kirino Y, Maragkakis M, Alexiou P, Ohtaki A, Murali R, Mourelatos Z, Kirino Y (2013) Mitochondrial protein BmPAPI modulates the length of mature piRNAs. RNA 19: 1405–1418. 10.1261/rna.040428.113 PubMed DOI PMC

Han BW, Wang W, Li C, Weng Z, Zamore PD (2015) Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 348: 817–821. 10.1126/science.aaa1264 PubMed DOI PMC

Mohn F, Handler D, Brennecke J (2015) Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science 348: 812–817. 10.1126/science.aaa1039 PubMed DOI PMC

Homolka D, Pandey RR, Goriaux C, Brasset E, Vaury C, Sachidanandam R, Fauvarque M-O, Pillai RS (2015) PIWI slicing and RNA elements in precursors instruct directional primary piRNA biogenesis. Cell Rep 12: 418–428. 10.1016/j.celrep.2015.06.030 PubMed DOI

Vourekas A, Zheng K, Fu Q, Maragkakis M, Alexiou P, Ma J, Pillai RS, Mourelatos Z, Wang PJ (2015) The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. Genes Dev 29: 617–629. 10.1101/gad.254631.114 PubMed DOI PMC

Gainetdinov I, Colpan C, Arif A, Cecchini K, Zamore PD (2018) A single mechanism of biogenesis, initiated and directed by PIWI proteins, explains piRNA production in most animals. Mol Cell 71: 775–790.e5. 10.1016/j.molcel.2018.08.007 PubMed DOI PMC

Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12: 3715–3727. 10.1101/gad.12.23.3715 PubMed DOI PMC

Harris AN, Macdonald PM (2001) Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128: 2823–2832. PubMed

Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128: 1089–1103. 10.1016/j.cell.2007.01.043 PubMed DOI

Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (2007) A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315: 1587–1590. 10.1126/science.1140494 PubMed DOI

Czech B, Hannon GJ (2016) One loop to rule them all: The ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci 41: 324–337. 10.1016/j.tibs.2015.12.008 PubMed DOI PMC

Sato K, Iwasaki YW, Shibuya A, Carninci P, Tsuchizawa Y, Ishizu H, Siomi MC, Siomi H (2015) Krimper enforces an antisense bias on piRNA pools by binding AGO3 in the Drosophila germline. Mol Cell 59: 553–563. 10.1016/j.molcel.2015.06.024 PubMed DOI

Webster A, Li S, Hur JK, Wachsmuth M, Bois JS, Perkins EM, Patel DJ, Aravin AA (2015) Aub and Ago3 are recruited to nuage through two mechanisms to form a ping-pong complex assembled by krimper. Mol Cell 59: 564–575. 10.1016/j.molcel.2015.07.017 PubMed DOI PMC

Xiol J, Spinelli P, Laussmann MA, Homolka D, Yang Z, Cora E, Couté Y, Conn S, Kadlec J, Sachidanandam R, et al. (2014) RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts. Cell 157: 1698–1711. 10.1016/j.cell.2014.05.018 PubMed DOI

Zhang Z, Xu J, Koppetsch BS, Wang J, Tipping C, Ma S, Weng Z, Theurkauf WE, Zamore PD (2011) Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains. Mol Cell 44: 572–584. 10.1016/j.molcel.2011.10.011 PubMed DOI PMC

Anand A, Kai T (2012) The tudor domain protein kumo is required to assemble the nuage and to generate germline piRNAs in Drosophila. EMBO J 31: 870–882. 10.1038/emboj.2011.449 PubMed DOI PMC

Illmensee K, Mahowald AP (1974) Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc Natl Acad Sci U S A 71: 1016–1020. 10.1073/pnas.71.4.1016 PubMed DOI PMC

Kugler JM, Lasko P (2009) Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly (Austin) 3: 15–28. 10.4161/fly.3.1.7751 PubMed DOI

Boswell RE, Mahowald AP (1985) tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43: 97–104. 10.1016/0092-8674(85)90015-7 PubMed DOI

Arkov AL, Wang J-YS, Ramos A, Lehmann R (2006) The role of Tudor domains in germline development and polar granule architecture. Development 133: 4053–4062. 10.1242/dev.02572 PubMed DOI

Liu H, Wang J-YS, Huang Y, Li Z, Gong W, Lehmann R, Xu R-M (2010) Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. Genes Dev 24: 1876–1881. 10.1101/gad.1956010 PubMed DOI PMC

Ren R, Liu H, Wang W, Wang M, Yang N, Dong Y-h, Gong W, Lehmann R, Xu R-M (2014) Structure and domain organization of Drosophila Tudor. Cell Res 24: 1146–1149. 10.1038/cr.2014.63 PubMed DOI PMC

Gan B, Chen S, Liu H, Min J, Liu K (2019) Structure and function of eTudor domain containing TDRD proteins. Crit Rev Biochem Mol Biol 54: 119–132. 10.1080/10409238.2019.1603199 PubMed DOI

Vourekas A, Alexiou P, Vrettos N, Maragkakis M, Mourelatos Z (2016) Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasm. Nature 531: 390–394. 10.1038/nature17150 PubMed DOI PMC

Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322: 1387–1392. 10.1126/science.1165171 PubMed DOI PMC

Schmidt A, Palumbo G, Bozzetti MP, Tritto P, Pimpinelli S, Schäfer U (1999) Genetic and molecular characterization of sting, a gene involved in crystal formation and meiotic drive in the male germ line of Drosophila melanogaster. Genetics 151: 749–760. PubMed PMC

Klattenhoff C, Bratu DP, McGinnis-Schultz N, Koppetsch BS, Cook HA, Theurkauf WE (2007) Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev Cell 12: 45–55. 10.1016/j.devcel.2006.12.001 PubMed DOI

Stein CB, Genzor P, Mitra S, Elchert AR, Ipsaro JJ, Benner L, Sobti S, Su Y, Hammell M, Joshua-Tor L, et al. (2019) Decoding the 5′ nucleotide bias of PIWI-interacting RNAs. Nat Commun 10: 828 10.1038/s41467-019-08803-z PubMed DOI PMC

Hayashi R, Schnabl J, Handler D, Mohn F, Ameres SL, Brennecke J (2016) Genetic and mechanistic diversity of piRNA 3′-end formation. Nature 539: 588–592. 10.1038/nature20162 PubMed DOI PMC

Izumi N, Shoji K, Sakaguchi Y, Honda S, Kirino Y, Suzuki T, Katsuma S, Tomari Y (2016) Identification and functional analysis of the pre-piRNA 3′ trimmer in silkworms. Cell 164: 962–973. 10.1016/j.cell.2016.01.008 PubMed DOI PMC

Saxe JP, Chen M, Zhao H, Lin H (2013) Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J 32: 1869–1885. 10.1038/emboj.2013.121 PubMed DOI PMC

Trcek T, Lehmann R (2019) Germ granules in Drosophila. Traffic 20: 650–660. 10.1111/tra.12674 PubMed DOI PMC

Saito K, Inagaki S, Mituyama T, Kawamura Y, Ono Y, Sakota E, Kotani H, Asai K, Siomi H, Siomi MC (2009) A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461: 1296–1299. 10.1038/nature08501 PubMed DOI

Sumiyoshi T, Sato K, Yamamoto H, Iwasaki YW, Siomi H, Siomi MC (2016) Loss of l(3)mbt leads to acquisition of the ping-pong cycle in Drosophila ovarian somatic cells. Genes Dev 30: 1617–1622. 10.1101/gad.283929.116 PubMed DOI PMC

Vrettos N, Maragkakis M, Alexiou P, Mourelatos Z (2017) Kc167, a widely used Drosophila cell line, contains an active primary piRNA pathway. RNA 23: 108–118. 10.1261/rna.059139.116 PubMed DOI PMC

Huang X, Hu H, Webster A, Zou F, Du J, Toth KF, Aravin AA, Li S (2020) Binding of guide piRNA triggers methylation of the unstructured N-terminal region of Aub leading to assembly of the piRNA amplification complex. bioRxiv 10.1101/2020.07.14.203323 (Preprint posted July 14, 2020). PubMed DOI PMC

Barckmann B, Pierson S, Dufourt J, Papin C, Armenise C, Port F, Grentzinger T, Chambeyron S, Baronian G, Desvignes J-P, et al. (2015) Aubergine iCLIP reveals piRNA-dependent decay of mRNAs involved in germ cell development in the early embryo. Cell Rep 12: 1205–1216. 10.1016/j.celrep.2015.07.030 PubMed DOI PMC

Vo HDL, Wahiduzzaman, Tindell SJ, Zheng J, Gao M, Arkov AL (2019) Protein components of ribonucleoprotein granules from Drosophila germ cells oligomerize and show distinct spatial organization during germline development. Sci Rep 9: 19190 10.1038/s41598-019-55747-x PubMed DOI PMC

Meikar O, Vagin VV, Chalmel F, Sõstar K, Lardenois A, Hammell M, Jin Y, Da Ros M, Wasik KA, Toppari J, et al. (2014) An atlas of chromatoid body components. RNA 20: 483–495. 10.1261/rna.043729.113 PubMed DOI PMC

Queenan AM, Barcelo G, Van Buskirk C, Schüpbach T (1999) The transmembrane region of Gurken is not required for biological activity, but is necessary for transport to the oocyte membrane in Drosophila. Mech Dev 89: 35–42. 10.1016/s0925-4773(99)00196-3 PubMed DOI

Findley SD, Tamanaha M, Clegg NJ, Ruohola-Baker H (2003) Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development 130: 859–871. 10.1242/dev.00310 PubMed DOI

Maragkakis M, Alexiou P, Nakaya T, Mourelatos Z (2016) CLIPSeqTools: A novel bioinformatics CLIP-seq analysis suite. RNA 22: 1–9. 10.1261/rna.052167.115 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...