Billet Straightening by Three-Point Bending and Its Automation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN01000024
TECHNOLOGY AGENCY OF THE CZECH REPUBLIC
CZ.02.1.01/0.0/0.0/16_019/0000867
EUROPEAN REGIONAL DEVELOPMENT FUND
SP2020/57
MINISTRY OF EDUCATION, YOUTH AND SPORTS OF THE CZECH REPUBLIC
SP2020/23
MINISTRY OF EDUCATION, YOUTH AND SPORTS OF THE CZECH REPUBLIC
PubMed
33379180
PubMed Central
PMC7795452
DOI
10.3390/ma14010090
PII: ma14010090
Knihovny.cz E-zdroje
- Klíčová slova
- FEM, billet straightening, control strategy, straightening process, three-point bending,
- Publikační typ
- časopisecké články MeSH
This paper presents the current results of cooperation focused on automatic billet straightening machine development. First, an experimental study of three-point bending realized on small specimens is presented to explain the basic ideas of the straightening. Then, the main regimes of straightening and the algorithm itself are described together. Subsequent finite element simulations of operational experiments show the applicability of the developed theory. The significance of material parameters estimation is depicted in this work. At least four parameters have to be properly determined for a new material in the straightening process.
Zobrazit více v PubMed
Fusek M., Halama R., Poruba Z. Calibration of material parameters during billet straightening; Proceedings of the EAN 2017-55th Conference on Experimental Stress Analysis 2017; Novy Smokovec, Slovakia. 30 May–1 June 2017; pp. 611–615.
Halama R., Sikora J., Fusek M., Marek M., Bartecká J., Guráš R., Wagnerová R., Mahdal M. Algorithms for Automatic Billet Straightening Machine; Proceedings of the EAN 2020—58th Conference on Experimental Stress Analysis 2020; Online, Czech Republic. 19–22 October 2020; pp. 107–112.
Yi G., Wang Z., Hu Z. A novel modeling method in metal strip leveling based on a roll-strip unit. Math. Probl. Eng. 2020;2020:1–16. doi: 10.1155/2020/1486864. DOI
Kaiser R., Stefenelli M., Hatzenbichler T., Antretter T., Hofmann M., Keckes J., Buchmayr B. Experimental characterization and modelling of triaxial residual stresses in straightened railway rails. J. Strain Anal. Eng. Des. 2015;50:190–198. doi: 10.1177/0309324714560040. DOI
Wang K., Wang B., Yang C. Research on the Multi-Step Straightening for the Elevator Guide Rail. Procedia Eng. 2011;16:459–466. doi: 10.1016/j.proeng.2011.08.1111. DOI
Zhang Y., Lu H., Zhang X., Ling H., Fan W., Wei Q., Lian Y. A novel control strategy for the multi-step straightening process of long/extra-long linear guideways. Proc. Inst. Mech. Eng. Part. C J. Mech. Eng. Sci. 2019;233:2959–2975. doi: 10.1177/0954406218800117. DOI
Petruška J., Návrat T., Šebek F. Novel approach to computational simulation of cross roll straightening of bars. J. Mater. Process. Technol. 2016;233:53–67. doi: 10.1016/j.jmatprotec.2016.02.004. DOI
Wu B.J., Chan L.C., Lee T.C., Ao L.W. A study on the precision modeling of the bars produced in two cross-roll straightening. J. Mater. Process. Technol. 2000;99:202–206. doi: 10.1016/S0924-0136(99)00421-5. DOI
Fan Q.-H., Ma Z.-Y., Ma L.-D., Lei J.-Y. Study on roller shape of two-roll straightening of titanium alloy based on rolling and reverse bending theory. Suxing Gongcheng Xuebao J. Plast. Eng. 2020;27:212–220. doi: 10.3969/j.issn.1007-2012.2020.10.029. DOI
Ma L., Du Y., Liu Z., Ma L. Design of continuous variable curvature roll shape and straightening process research for two-roll straightener of bar. Int. J. Adv. Manuf. Technol. 2019;105:4345–4358. doi: 10.1007/s00170-019-04533-0. DOI
Petruška J., Návrat T., Šebek F., Benešovský M. Optimal intermeshing of multi roller cross roll straightening machine; Proceedings of the 19th International ESAFORM Conference on Material Forming; Nantes, France. 27–29 April 2016; p. 120002. DOI
Zhang Z.-Q. Prediction of Maximum Section Flattening of Thin-walled Circular Steel Tube in Continuous Rotary Straightening Process. J. Iron Steel Res. Int. 2016;23:745–755. doi: 10.1016/S1006-706X(16)30116-9. DOI
Zhang Z.Q., Yan Y.H., Yang H.L. A simplified model of maximum cross-section flattening in continuous rotary straightening process of thin-walled circular steel tubes. J. Mater. Process. Technol. 2016;238:305–314. doi: 10.1016/j.jmatprotec.2016.07.034. DOI
De Morais A.B. A thick bondline beam model for the adhesively bonded 3-point bending specimen. Int. J. Adhes. Adhes. 2020;96:102465. doi: 10.1016/j.ijadhadh.2019.102465. DOI
Lu H., Zang Y., Zhang X., Zhang Y., Li L. A General Stroke-Based Model for the Straightening Process of D-Type Shaft. Processes. 2020;8:528. doi: 10.3390/pr8050528. DOI
Essa A.-E., Nasr M., Ahmed M. Variation of The Residual Stresses and Springback in Sheet Bending from Plane-Strain to Plane-Stress Condition using Finite Element Modelling; Proceedings of the International Conference on Applied Mechanics and Mechanical Engineering, Military Technical College Kobry El-Kobbah; Cairo, Egypt. 19–21 April 2016;
Xiao-Lin W., Zhao-Bo Q. Analyzing an Implemented Mechanism of Intelligent System and Its Work Flow for Straightening Machine of Heavy Beam; Proceedings of the 2010 International Conference on Intelligent System Design and Engineering Application; Changsha, China. 13–14 October 2010; pp. 323–326. DOI
Zhang Y., Lu H., Ling H., Lian Y., Ma M. Analytical Model of a Multi-Step Straightening Process for Linear Guideways Considering Neutral Axis Deviation. Symmetry. 2018;10:316. doi: 10.3390/sym10080316. DOI
Zhang Y., Lu H., Wang Y., Zhang X., Zhang J., Ling H. Variable Span Multistep Straightening Process for Long/Extra-Long Linear Guideways. IEEE Access. 2019;7:107491–107505. doi: 10.1109/ACCESS.2019.2927115. DOI
Jin L., Yang Y.-F., Li R.-Z., Cui Y.-W., Jamil M., Li L. Study on Springback Straightening after Bending of the U-Section of TC4 Material under High-Temperature Conditions. Materials. 2020;13:1895. doi: 10.3390/ma13081895. PubMed DOI PMC
Eggertsen P.-A., Mattiasson K. On the identification of kinematic hardening material parameters for accurate springback predictions. Int. J. Mater. Form. 2011;4:103–120. doi: 10.1007/s12289-010-1014-7. DOI
Kim S.C., Chung S.C. Synthesis of the multi-step straightness control system for shaft straightening processes. Mechatronics. 2002;12:139–156. doi: 10.1016/S0957-4158(00)00066-0. DOI
Balic J., Nastran M. An on-line predictive system for steel wire straightening using genetic programming. Eng. Appl. Artif. Intell. 2002;15:559–565. doi: 10.1016/S0952-1976(03)00021-6. DOI
Song Y., Yu Z. Springback prediction in T-section beam bending process using neural networks and finite element method. Arch. Civ. Mech. Eng. 2013;13:229–241. doi: 10.1016/j.acme.2012.11.004. DOI
Ling H., Yang C., Feng S., Lu H. Predictive model of grinding residual stress for linear guideway considering straightening history. Int. J. Mech. Sci. 2020;176:105536. doi: 10.1016/j.ijmecsci.2020.105536. DOI
Yoshida F., Uemori T. A model of large-strain cyclic plasticity and its application to springback simulation. Int. J. Mech. Sci. 2003;45:1687–1702. doi: 10.1016/j.ijmecsci.2003.10.013. DOI
Yoshida F., Uemori T., Fujiwara K. Elastic-plastic behaviour of steel sheets under in-plane cyclic tension-compression at large strain. Int. J. Plast. 2002;18:633–659. doi: 10.1016/S0749-6419(01)00049-3. DOI
Hajbarati H., Zajkani A. A novel analytical model to predict springback of DP780 steel based on modified Yoshida-Uemori two-surface hardening model. Int. J. Mater. Form. 2019;12:441–455. doi: 10.1007/s12289-018-1427-2. DOI
Zhao K.M., Lee J.K. Finite element analysis of the threepoint bending of sheet metals. J. Mater. Process. Technol. 2002;122:6–11. doi: 10.1016/S0924-0136(01)01064-0. DOI
Chaboche J.L., Lemaitre J. Mechanics of Solid Materials. 1st ed. Cambridge University Press; Cambridge, UK: 1990.
Armstrong P.J., Frederick C.O. A Mathematical Representation of the Multiaxial Bauschinger Effect, G.E.G.B. Report RD/B/N. University of Leicester; Leicester, UK: 1996. p. 731.