Human Hand Anatomy-Based Prosthetic Hand

. 2020 Dec 28 ; 21 (1) : . [epub] 20201228

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33379252

The present paper describes the development of a prosthetic hand based on human hand anatomy. The hand phalanges are printed with 3D printing with Polylactic Acid material. One of the main contributions is the investigation on the prosthetic hand joins; the proposed design enables one to create personalized joins that provide the prosthetic hand a high level of movement by increasing the degrees of freedom of the fingers. Moreover, the driven wire tendons show a progressive grasping movement, being the friction of the tendons with the phalanges very low. Another important point is the use of force sensitive resistors (FSR) for simulating the hand touch pressure. These are used for the grasping stop simulating touch pressure of the fingers. Surface Electromyogram (EMG) sensors allow the user to control the prosthetic hand-grasping start. Their use may provide the prosthetic hand the possibility of the classification of the hand movements. The practical results included in the paper prove the importance of the soft joins for the object manipulation and to get adapted to the object surface. Finally, the force sensitive sensors allow the prosthesis to actuate more naturally by adding conditions and classifications to the Electromyogram sensor.

Zobrazit více v PubMed

Raichle K.A., Hanley M.A., Molton I., Kadel N.J., Campbell K., Phelps E., Ehde D., Smith D.G. Prosthesis use in persons with lower- and upper-limb amputation. J. Rehabil. Res. Dev. 2008;45:961–972. doi: 10.1682/JRRD.2007.09.0151. PubMed DOI PMC

Uellendahl J.E., Uellendahl E.N. Experience Fitting Partial Hand Prostheses with Externally Powered Fingers. Bentham Science; Sharjah, UAE: 2012. pp. 15–27.

O&P Almanac Amputation data from community hospitals. O&P Almanac. 2016;65:8.

Bethge M., Von Groote P., Giustini A., Gutenbrunner C. The world report on disability: A challenge for rehabilitation medicine. Am. J. Phys. Med. Rehabil. 2014;93:S4–S11. doi: 10.1097/PHM.0000000000000016. PubMed DOI

Sahu A., Sagar R., Sarkar S., Sagar S. Psychological effects of amputation: A review of studies from India. Ind. Psychiatry J. 2016;25:4–10. doi: 10.4103/0972-6748.196041. PubMed DOI PMC

Solgajová A., Sollár T., Vörösová G. Gender, age and proactive coping as predictors of coping in patients with limb amputation. Kontakt. 2015;17:e67–e72. doi: 10.1016/j.kontakt.2015.01.005. DOI

Cavanagh S.R., Shin L.M., Karamouz N., Rauch S.L. Psychiatric and emotional sequelae of surgical amputation. Psychosomatics. 2006;47:459–464. doi: 10.1176/appi.psy.47.6.459. PubMed DOI

Abeyasinghe N.L., de Zoysa P., Bandara K.M., Bartholameuz N.A., Bandara J.M. The prevalence of symptoms of post-traumatic stress disorder among soldiers with amputation of a limb or spinal injury: A report from a rehabilitation centre in Sri Lanka. Psychol. Health Med. 2012;17:376–381. doi: 10.1080/13548506.2011.608805. PubMed DOI

Childress D.S. Historical aspects of powered limb prosthesis. Clin. Prosthet. Orthot. 1985;9:2–13.

Parker P.A., Scott R.N. Myoelectric control of prostheses. Crit. Rev. Biomed. Eng. 1986;13:283–310. PubMed

Shenoy P., Miller K.J., Crawford B., Rao R.P.N. Online electromyographic control of a robotic prosthesis. IEEE Trans. Biomed. Eng. 2008;55:1128–1135. doi: 10.1109/TBME.2007.909536. PubMed DOI

Khushaba R.N., Kodagoda S., Takruri M., Dissanayake G. Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals. Expert Syst. Appl. 2012;39:10731–10738. doi: 10.1016/j.eswa.2012.02.192. DOI

Weir R.F., Troyk P.R., Schorsch J.F., Maas H. Implantable myoelectric sensor (IMESs) for intramuscular electromyogram recording. IEEE Trans. Biomed. Eng. 2009;56:159–171. doi: 10.1109/TBME.2008.2005942. PubMed DOI PMC

Malesevic N., Björkman A., Andersson G.S. A database of multi-channel intramuscular electromyogram signals during isometric hand muscles contractions. Sci. Data. 2020;7:10. doi: 10.1038/s41597-019-0335-8. PubMed DOI PMC

Resnik L., Klinger S.L., Etter K. The DEKA Arm: Its features, functionality, and evolution during the Veterans Affairs study to optimize the DEKA arm. Prosthet. Orthot. Int. 2014;38:492–504. doi: 10.1177/0309364613506913. PubMed DOI

Belter J.T., Segil J.L., Dollar A.M., Weir R.F. Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review. J. Rehabil. Res. Dev. 2013;50:599–618. doi: 10.1682/JRRD.2011.10.0188. PubMed DOI

Be Bionic, Technical Manual. [(accessed on 25 August 2020)]; Available online: https://shop.ottobock.us/media/pdf/bebionicTechManualSmall.pdf.

i-Limb, Ossur. [(accessed on 27 October 2020)]; Available online: https://www.ortosur.es/catalogo-de-productos/protesis/miembro-superior/mano-mioelectrica/i-limb/

Dosen S., Cipriani C., Kostic M., Controzzi M., Carrozza M.C., Popovic D.B. Cognitive vision system for control of dexterous prosthetic hands: Experimental evaluation. J. Neuroeng. Rehabil. 2010;7:42. doi: 10.1186/1743-0003-7-42. PubMed DOI PMC

Mainardi E., Davalli A. Controlling a prosthetic arm with a throat microphone; Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Lyon, France. 22–26 August 2007; pp. 3035–3039. PubMed

Johansen D., Cipriani C., Popovic D.B., Struijk L.N. Control of a Robotic Hand Using a Tongue Control System-A Prosthesis Application. IEEE Trans. Biomed. Eng. 2016;63:1368–1376. doi: 10.1109/TBME.2016.2517742. PubMed DOI

Feix T., Romero J., Ek C.H., Schmiedmayer H.B., Kragic D.A. Metric for Comparing the Anthropomorphic Motion Capability of Artificial Hands. Robotics. IEEE Trans. Robot. 2013;29:82–93. doi: 10.1109/TRO.2012.2217675. DOI

Connolly C. Prosthetic hands from Touch Bionics. Ind. Robot. Int. J. 2018;35:290–293. doi: 10.1108/01439910810876364. DOI

Medynski C., Rattray B. Bebionic prosthetic design; Proceedings of the MyoElectric Controls/Powered Prosthetics Symposium (MEC); Fredericton, NB, Canada. 14–19 August 2001; pp. 1–4.

[(accessed on 30 November 2020)]; Available online: https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/myoelectric-devices-speedhands/

VINCENT Hand. Weingarten (Germany): Vin-Cent Systems. [(accessed on 30 November 2020)];2013 Available online: http://handprothese.de/vincent-hand/

Ma R.R., Dollar A.M. On dexterity and dexterous manipulation; Proceedings of the 15th International Conference on Advanced Robotics (ICAR); Tallinn, Estonia. 20–23 June 2011; pp. 1–7.

Mnyusiwalla H., Vulliez P., Gazeau J.P., Zeghloul S. A new desxteros had based on bio-inspired finger design for inside-hand manipulation. IEEE Trans. Syst. 2016;46:809–817.

Abdul Wahit A.A., Ahmad S.A., Marhaban M.H., Wada C., Izhar L.I. 3D printed robot hand structure using four-bar linkage mechanism for prosthetic applications. Sensors. 2020;20:4174. doi: 10.3390/s20154174. PubMed DOI PMC

Favieiro G.W., Balbinot A., Barreto M.M. Decoding arm movements by myoeletric signals and artificial neural networks; Proceedings of the ISSNIP Biosignals and Biorobotics Conference; Vitoria, Brazil. 6–8 January 2011; pp. 1–6.

Franzke A.W., Kristoffersen M.B., Bongers R.M., Murgia A., Pobatschnig B., Unglaube F., Van Der Sluis C.K. Users’ and therapists’ perceptions of myoelectric multi-function upper limb prostheses with conventional and pattern recognition control. PLoS ONE. 2019;14:e0220899. doi: 10.1371/journal.pone.0220899. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...