Human Hand Anatomy-Based Prosthetic Hand
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
33379252
PubMed Central
PMC7795667
DOI
10.3390/s21010137
PII: s21010137
Knihovny.cz E-resources
- Keywords
- MyWare sensor, force sensing resistors, human hand anatomy, prosthetic hand,
- MeSH
- Humans MeSH
- Prosthesis Design MeSH
- Fingers MeSH
- Hand * MeSH
- Hand Strength MeSH
- Tendons MeSH
- Artificial Limbs * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The present paper describes the development of a prosthetic hand based on human hand anatomy. The hand phalanges are printed with 3D printing with Polylactic Acid material. One of the main contributions is the investigation on the prosthetic hand joins; the proposed design enables one to create personalized joins that provide the prosthetic hand a high level of movement by increasing the degrees of freedom of the fingers. Moreover, the driven wire tendons show a progressive grasping movement, being the friction of the tendons with the phalanges very low. Another important point is the use of force sensitive resistors (FSR) for simulating the hand touch pressure. These are used for the grasping stop simulating touch pressure of the fingers. Surface Electromyogram (EMG) sensors allow the user to control the prosthetic hand-grasping start. Their use may provide the prosthetic hand the possibility of the classification of the hand movements. The practical results included in the paper prove the importance of the soft joins for the object manipulation and to get adapted to the object surface. Finally, the force sensitive sensors allow the prosthesis to actuate more naturally by adding conditions and classifications to the Electromyogram sensor.
See more in PubMed
Raichle K.A., Hanley M.A., Molton I., Kadel N.J., Campbell K., Phelps E., Ehde D., Smith D.G. Prosthesis use in persons with lower- and upper-limb amputation. J. Rehabil. Res. Dev. 2008;45:961–972. doi: 10.1682/JRRD.2007.09.0151. PubMed DOI PMC
Uellendahl J.E., Uellendahl E.N. Experience Fitting Partial Hand Prostheses with Externally Powered Fingers. Bentham Science; Sharjah, UAE: 2012. pp. 15–27.
O&P Almanac Amputation data from community hospitals. O&P Almanac. 2016;65:8.
Bethge M., Von Groote P., Giustini A., Gutenbrunner C. The world report on disability: A challenge for rehabilitation medicine. Am. J. Phys. Med. Rehabil. 2014;93:S4–S11. doi: 10.1097/PHM.0000000000000016. PubMed DOI
Sahu A., Sagar R., Sarkar S., Sagar S. Psychological effects of amputation: A review of studies from India. Ind. Psychiatry J. 2016;25:4–10. doi: 10.4103/0972-6748.196041. PubMed DOI PMC
Solgajová A., Sollár T., Vörösová G. Gender, age and proactive coping as predictors of coping in patients with limb amputation. Kontakt. 2015;17:e67–e72. doi: 10.1016/j.kontakt.2015.01.005. DOI
Cavanagh S.R., Shin L.M., Karamouz N., Rauch S.L. Psychiatric and emotional sequelae of surgical amputation. Psychosomatics. 2006;47:459–464. doi: 10.1176/appi.psy.47.6.459. PubMed DOI
Abeyasinghe N.L., de Zoysa P., Bandara K.M., Bartholameuz N.A., Bandara J.M. The prevalence of symptoms of post-traumatic stress disorder among soldiers with amputation of a limb or spinal injury: A report from a rehabilitation centre in Sri Lanka. Psychol. Health Med. 2012;17:376–381. doi: 10.1080/13548506.2011.608805. PubMed DOI
Childress D.S. Historical aspects of powered limb prosthesis. Clin. Prosthet. Orthot. 1985;9:2–13.
Parker P.A., Scott R.N. Myoelectric control of prostheses. Crit. Rev. Biomed. Eng. 1986;13:283–310. PubMed
Shenoy P., Miller K.J., Crawford B., Rao R.P.N. Online electromyographic control of a robotic prosthesis. IEEE Trans. Biomed. Eng. 2008;55:1128–1135. doi: 10.1109/TBME.2007.909536. PubMed DOI
Khushaba R.N., Kodagoda S., Takruri M., Dissanayake G. Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals. Expert Syst. Appl. 2012;39:10731–10738. doi: 10.1016/j.eswa.2012.02.192. DOI
Weir R.F., Troyk P.R., Schorsch J.F., Maas H. Implantable myoelectric sensor (IMESs) for intramuscular electromyogram recording. IEEE Trans. Biomed. Eng. 2009;56:159–171. doi: 10.1109/TBME.2008.2005942. PubMed DOI PMC
Malesevic N., Björkman A., Andersson G.S. A database of multi-channel intramuscular electromyogram signals during isometric hand muscles contractions. Sci. Data. 2020;7:10. doi: 10.1038/s41597-019-0335-8. PubMed DOI PMC
Resnik L., Klinger S.L., Etter K. The DEKA Arm: Its features, functionality, and evolution during the Veterans Affairs study to optimize the DEKA arm. Prosthet. Orthot. Int. 2014;38:492–504. doi: 10.1177/0309364613506913. PubMed DOI
Belter J.T., Segil J.L., Dollar A.M., Weir R.F. Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review. J. Rehabil. Res. Dev. 2013;50:599–618. doi: 10.1682/JRRD.2011.10.0188. PubMed DOI
Be Bionic, Technical Manual. [(accessed on 25 August 2020)]; Available online: https://shop.ottobock.us/media/pdf/bebionicTechManualSmall.pdf.
i-Limb, Ossur. [(accessed on 27 October 2020)]; Available online: https://www.ortosur.es/catalogo-de-productos/protesis/miembro-superior/mano-mioelectrica/i-limb/
Dosen S., Cipriani C., Kostic M., Controzzi M., Carrozza M.C., Popovic D.B. Cognitive vision system for control of dexterous prosthetic hands: Experimental evaluation. J. Neuroeng. Rehabil. 2010;7:42. doi: 10.1186/1743-0003-7-42. PubMed DOI PMC
Mainardi E., Davalli A. Controlling a prosthetic arm with a throat microphone; Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Lyon, France. 22–26 August 2007; pp. 3035–3039. PubMed
Johansen D., Cipriani C., Popovic D.B., Struijk L.N. Control of a Robotic Hand Using a Tongue Control System-A Prosthesis Application. IEEE Trans. Biomed. Eng. 2016;63:1368–1376. doi: 10.1109/TBME.2016.2517742. PubMed DOI
Feix T., Romero J., Ek C.H., Schmiedmayer H.B., Kragic D.A. Metric for Comparing the Anthropomorphic Motion Capability of Artificial Hands. Robotics. IEEE Trans. Robot. 2013;29:82–93. doi: 10.1109/TRO.2012.2217675. DOI
Connolly C. Prosthetic hands from Touch Bionics. Ind. Robot. Int. J. 2018;35:290–293. doi: 10.1108/01439910810876364. DOI
Medynski C., Rattray B. Bebionic prosthetic design; Proceedings of the MyoElectric Controls/Powered Prosthetics Symposium (MEC); Fredericton, NB, Canada. 14–19 August 2001; pp. 1–4.
[(accessed on 30 November 2020)]; Available online: https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/myoelectric-devices-speedhands/
VINCENT Hand. Weingarten (Germany): Vin-Cent Systems. [(accessed on 30 November 2020)];2013 Available online: http://handprothese.de/vincent-hand/
Ma R.R., Dollar A.M. On dexterity and dexterous manipulation; Proceedings of the 15th International Conference on Advanced Robotics (ICAR); Tallinn, Estonia. 20–23 June 2011; pp. 1–7.
Mnyusiwalla H., Vulliez P., Gazeau J.P., Zeghloul S. A new desxteros had based on bio-inspired finger design for inside-hand manipulation. IEEE Trans. Syst. 2016;46:809–817.
Abdul Wahit A.A., Ahmad S.A., Marhaban M.H., Wada C., Izhar L.I. 3D printed robot hand structure using four-bar linkage mechanism for prosthetic applications. Sensors. 2020;20:4174. doi: 10.3390/s20154174. PubMed DOI PMC
Favieiro G.W., Balbinot A., Barreto M.M. Decoding arm movements by myoeletric signals and artificial neural networks; Proceedings of the ISSNIP Biosignals and Biorobotics Conference; Vitoria, Brazil. 6–8 January 2011; pp. 1–6.
Franzke A.W., Kristoffersen M.B., Bongers R.M., Murgia A., Pobatschnig B., Unglaube F., Van Der Sluis C.K. Users’ and therapists’ perceptions of myoelectric multi-function upper limb prostheses with conventional and pattern recognition control. PLoS ONE. 2019;14:e0220899. doi: 10.1371/journal.pone.0220899. PubMed DOI PMC