Mannan-Based Nanodiagnostic Agents for Targeting Sentinel Lymph Nodes and Tumors

. 2020 Dec 31 ; 26 (1) : . [epub] 20201231

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33396204

Grantová podpora
16-30544a the Grant Agency of the Ministry of Health
IN00023001 MH CR-DRO
18-07983S the Czech Science Foundation
282216 the Charles University Grant Agency

Early detection of metastasis is crucial for successful cancer treatment. Sentinel lymph node (SLN) biopsies are used to detect possible pathways of metastasis spread. We present a unique non-invasive diagnostic alternative to biopsy along with an intraoperative imaging tool for surgery proven on an in vivo animal tumor model. Our approach is based on mannan-based copolymers synergistically targeting: (1) SLNs and macrophage-infiltrated solid tumor areas via the high-affinity DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) receptors and (2) tumors via the enhanced permeability and retention (EPR) effect. The polymer conjugates were modified with the imaging probes for visualization with magnetic resonance (MR) and fluorescence imaging, respectively, and with poly(2-methyl-2-oxazoline) (POX) to lower unwanted accumulation in internal organs and to slow down the biodegradation rate. We demonstrated that these polymer conjugates were successfully accumulated in tumors, SLNs and other lymph nodes. Modification with POX resulted in lower accumulation not only in internal organs, but also in lymph nodes and tumors. Importantly, we have shown that mannan-based polymer carriers are non-toxic and, when applied to an in vivo murine cancer model, and offer promising potential as the versatile imaging agents.

Zobrazit více v PubMed

Veronesi U., Paganelli G., Viale G., Luini A., Zurrida S., Galimberti V., Intra M., Veronesi P., Robertson C., Maisonneuve P., et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N. Engl. J. Med. 2003;349:546–553. doi: 10.1056/NEJMoa012782. PubMed DOI

Lyman G.H., Giuliano A.E., Somerfield M.R., Benson A.B., 3rd, Bodurka D.C., Burstein H.J., Cochran A.J., Hiram S.C., 3rd, Edge S.B., Galper S., et al. American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J. Clin. Oncol. 2005;23:7703–7720. doi: 10.1200/JCO.2005.08.001. PubMed DOI

Qiu S.Q., Zhang G.J., Jansen L., de Vries J., Schroder C.P., de Vries E.G.E., van Dam G.M. Evolution in sentinel lymph node biopsy in breast cancer. Crit. Rev. Oncol. Hematol. 2018;123:83–94. doi: 10.1016/j.critrevonc.2017.09.010. PubMed DOI

Karaman S., Detmar M. Mechanisms of lymphatic metastasis. J. Clin. Investig. 2014;124:922–928. doi: 10.1172/JCI71606. PubMed DOI PMC

Evertsson M., Kjellman P., Cinthio M., Andersson R., Tran T.A., In’t Zandt R., Grafström G., Toftevall H., Fredriksson S., Ingvar C., et al. Combined Magnetomotive ultrasound, PET/CT, and MR imaging of (68)Ga-labelled superparamagnetic iron oxide nanoparticles in rat sentinel lymph nodes in vivo. Sci. Rep. 2017;7:4824. doi: 10.1038/s41598-017-04396-z. PubMed DOI PMC

Dong Y., Feng Q., Yang W., Lu Z., Deng C., Zhang L., Lian Z., Liu J., Luo X., Pei S., et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI. Eur. Radiol. 2018;28:582–591. doi: 10.1007/s00330-017-5005-7. PubMed DOI

Krischer B., Forte S., Niemann T., Kubik-Huch R.A., Leo C. Feasibility of breast MRI after sentinel procedure for breast cancer with superparamagnetic tracers. Eur. J. Surg. Oncol. 2018;44:74–79. doi: 10.1016/j.ejso.2017.11.016. PubMed DOI

Garcia-Uribe A., Erpelding T.N., Krumholz A., Ke H., Maslov K., Appleton C., Margenthaler J.A., Wang L.V. Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer. Sci. Rep. 2015;5:15748. doi: 10.1038/srep15748. PubMed DOI PMC

Joseph F.J., van Oepen A., Friebe M. Breast sentinel lymph node biopsy with imaging towards minimally invasive surgery. Biomed. Tech. 2017;62:547–555. doi: 10.1515/bmt-2016-0164. PubMed DOI

Jain R., Dandekar P., Patravale V. Diagnostic nanocarriers for sentinel lymph node imaging. J. Control. Release. 2009;138:90–102. doi: 10.1016/j.jconrel.2009.05.010. PubMed DOI

Mantovani A., Schioppa T., Porta C., Allavena P., Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006;25:315–322. doi: 10.1007/s10555-006-9001-7. PubMed DOI

Sica A., Schioppa T., Mantovani A., Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur. J. Cancer. 2006;42:717–727. doi: 10.1016/j.ejca.2006.01.003. PubMed DOI

Ezekowitz R.A., Williams D.J., Koziel H., Armstrong M.Y., Warner A., Richards F.F., Rose R.M. Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nat. Cell Biol. 1991;351:155–158. doi: 10.1038/351155a0. PubMed DOI

Garcia-Vallejo J.J., van Kooyk Y. The physiological role of DC-SIGN: A tale of mice and men. Trends Immunol. 2013;34:482–486. doi: 10.1016/j.it.2013.03.001. PubMed DOI

Hu J., Wei P., Seeberger P.H., Yin J. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chem. Asian J. 2018;13:3448–3459. doi: 10.1002/asia.201801088. PubMed DOI

Lepenies B., Lee J., Sonkaria S. Targeting C-type lectin receptors with multivalent carbohydrate ligands. Adv. Drug Deliver Rev. 2013;65:1271–1281. doi: 10.1016/j.addr.2013.05.007. PubMed DOI

Feinberg H., Mitchell D.A., Drickamer K., Weis W.I. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science. 2001;294:2163–2166. doi: 10.1126/science.1066371. PubMed DOI

Feinberg H., Castelli R., Drickamer K., Seeberger P.H., Weis W.I. Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins. J. Biol. Chem. 2007;282:4202–4209. doi: 10.1074/jbc.M609689200. PubMed DOI PMC

Guo Y., Feinberg H., Conroy E., Mitchell D.A., Alvarez R., Blixt O., Taylor M.E., Weis W.I., Drickamer K. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol. 2004;11:591–598. doi: 10.1038/nsmb784. PubMed DOI

Yong S.B., Chung J.Y., Song Y., Kim J., Ra S., Kim Y.H. Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells. Biomaterials. 2019;219:119401. doi: 10.1016/j.biomaterials.2019.119401. PubMed DOI

Gardner A., Ruffell B. Dendritic Cells and Cancer Immunity. Trends Immunol. 2016;37:855–865. doi: 10.1016/j.it.2016.09.006. PubMed DOI PMC

Chiang C.L., Kandalaft L.E. In vivo cancer vaccination: Which dendritic cells to target and how? Cancer Treat. Rev. 2018;71:88–101. doi: 10.1016/j.ctrv.2018.10.012. PubMed DOI PMC

Buckeridge M.S. Seed cell wall storage polysaccharides: Models to understand cell wall biosynthesis and degradation. Plant Physiol. 2010;154:1017–1023. doi: 10.1104/pp.110.158642. PubMed DOI PMC

Edwards M., Scott C., Gidley M.J., Reid J.S. Control of mannose/galactose ratio during galactomannan formation in developing legume seeds. Planta. 1992;187:67–74. doi: 10.1007/BF00201625. PubMed DOI

Pauly M., Gille S., Liu L., Mansoori N., de Souza A., Schultink A., Xiong G. Hemicellulose biosynthesis. Planta. 2013;238:627–642. doi: 10.1007/s00425-013-1921-1. PubMed DOI

Dos Santos M.A., Grenha A. Polysaccharide nanoparticles for protein and Peptide delivery: Exploring less-known materials. Adv. Protein Chem. Struct. Biol. 2015;98:223–261. doi: 10.1016/bs.apcsb.2014.11.003. PubMed DOI

Zia F., Zia K.M., Zuber M., Ahmad H.B., Muneer M. Glucomannan based polyurethanes: A critical short review of recent advances and future perspectives. Int. J. Biol. Macromol. 2016;87:229–236. doi: 10.1016/j.ijbiomac.2016.02.058. PubMed DOI

Fang J., Nakamura H., Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011;63:136–151. doi: 10.1016/j.addr.2010.04.009. PubMed DOI

Taurin S., Nehoff H., Greish K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J. Control. Release. 2012;164:265–275. doi: 10.1016/j.jconrel.2012.07.013. PubMed DOI

Barar J., Omidi Y. Dysregulated pH in Tumor Microenvironment Checkmates Cancer Therapy. Bioimpacts. 2013;3:149–162. doi: 10.5681/bi.2013.036. PubMed DOI PMC

Omidi Y., Barar J. Targeting tumor microenvironment: Crossing tumor interstitial fluid by multifunctional nanomedicines. Bioimpacts. 2014;4:55–67. doi: 10.5681/bi.2014.021. PubMed DOI PMC

Sindhwani S., Syed A.M., Ngai J., Kingston B.R., Maiorino L., Rothschild J., Macmillan P., Zhang Y., Rajesh N.U., Hoang T., et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020;19:566–575. doi: 10.1038/s41563-019-0566-2. PubMed DOI

Duncan R., Gilbert H.R., Carbajo R.J., Vicent M.J. Polymer masked-unmasked protein therapy. 1. Bioresponsive dextrin-trypsin and -melanocyte stimulating hormone conjugates designed for alpha-amylase activation. Biomacromolecules. 2008;9:1146–1154. doi: 10.1021/bm701073n. PubMed DOI

Hreczuk-Hirst D., Chicco D., German L., Duncan R. Dextrins as potential carriers for drug targeting: Tailored rates of dextrin degradation by introduction of pendant groups. Int. J. Pharm. 2001;230:57–66. doi: 10.1016/S0378-5173(01)00859-6. PubMed DOI

Luxenhofer R., Han Y., Schulz A., Tong J., He Z., Kabanov A.V., Jordan R. Poly(2-oxazoline)s as polymer therapeutics. Macromol. Rapid Commun. 2012;33:1613–1631. doi: 10.1002/marc.201200354. PubMed DOI PMC

Amoozgar Z., Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev. Nanomed Nanobiotechnol. 2012;4:219–233. doi: 10.1002/wnan.1157. PubMed DOI PMC

Pidhatika B., Rodenstein M., Chen Y., Rakhmatullina E., Muhlebach A., Acikgoz C., Textor M., Konradi R. Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings. Biointerphases. 2012;7:1. doi: 10.1007/s13758-011-0001-y. PubMed DOI

Grube M., Leiske M.N., Schubert U.S., Nischang I. POx as an Alternative to PEG? A Hydrodynamic and Light Scattering Study. Macromolecules. 2018;51:1905–1916. doi: 10.1021/acs.macromol.7b02665. DOI

Yang Q., Lai S.K. Anti-PEG immunity: Emergence, characteristics, and unaddressed questions. Wires Nanomed Nanobiotechnol. 2015;7:655–677. doi: 10.1002/wnan.1339. PubMed DOI PMC

Zhang P., Sun F., Liu S.J., Jiang S.Y. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J. Control. Release. 2016;244:184–193. doi: 10.1016/j.jconrel.2016.06.040. PubMed DOI PMC

Rabyk M., Galisova A., Jiratova M., Patsula V., Srbova L., Loukotova L., Parnica J., Jirak D., Stepaneka P., Hruby M. Mannan-based conjugates as a multimodal imaging platform for lymph nodes. J. Mater. Chem. B. 2018;6:2584–2596. doi: 10.1039/C7TB02888A. PubMed DOI

Suk J.S., Xu Q., Kim N., Hanes J., Ensign L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016;99 Pt A:28–51. doi: 10.1016/j.addr.2015.09.012. PubMed DOI PMC

Naahidi S., Jafari M., Edalat F., Raymond K., Khademhosseini A., Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release. 2013;166:182–194. doi: 10.1016/j.jconrel.2012.12.013. PubMed DOI

Oh N., Park J.H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 2014;9(Suppl. 1):51–63. doi: 10.2147/IJN.S26592. PubMed DOI PMC

Chang Y., Lee G.H., Kim T.J., Chae K.S. Toxicity of magnetic resonance imaging agents: Small molecule and nanoparticle. Curr. Top. Med. Chem. 2013;13:434–445. doi: 10.2174/1568026611313040004. PubMed DOI

Zhou Z., Lu Z.R. Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013;5:1–18. doi: 10.1002/wnan.1198. PubMed DOI PMC

Lansman J.B. Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit. J. Gen. Physiol. 1990;95:679–696. doi: 10.1085/jgp.95.4.679. PubMed DOI PMC

LysoTracker® and LysoSensor™ Probes. [(accessed on 11 November 2018)];2018 Available online: https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp07525.pdf&title=THlzb1RyYWNrZXIgYW5kIEx5c29TZW5zb3IgUHJvYmVz.

Hoechst Stains. [(accessed on 11 November 2018)];2018 Available online: https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp21486.pdf&title=SG9lY2hzdCBTdGFpbnM=

Freshney R.I. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. Wiley; Hoboken, NJ, USA: 2011.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...