Mannan-Based Nanodiagnostic Agents for Targeting Sentinel Lymph Nodes and Tumors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-30544a
the Grant Agency of the Ministry of Health
IN00023001
MH CR-DRO
18-07983S
the Czech Science Foundation
282216
the Charles University Grant Agency
PubMed
33396204
PubMed Central
PMC7795445
DOI
10.3390/molecules26010146
PII: molecules26010146
Knihovny.cz E-zdroje
- Klíčová slova
- 4T1 cells, MRI, SLN, cancer, mannan, multimodality imaging,
- MeSH
- apoptóza MeSH
- lidé MeSH
- lymfatické metastázy MeSH
- mannany chemie metabolismus MeSH
- myši inbrední BALB C MeSH
- myši inbrední C3H MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buňky kultivované MeSH
- nádory prsu metabolismus patologie MeSH
- nanočástice aplikace a dávkování chemie MeSH
- optické zobrazování MeSH
- proliferace buněk MeSH
- sentinelová uzlina metabolismus patologie MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mannany MeSH
Early detection of metastasis is crucial for successful cancer treatment. Sentinel lymph node (SLN) biopsies are used to detect possible pathways of metastasis spread. We present a unique non-invasive diagnostic alternative to biopsy along with an intraoperative imaging tool for surgery proven on an in vivo animal tumor model. Our approach is based on mannan-based copolymers synergistically targeting: (1) SLNs and macrophage-infiltrated solid tumor areas via the high-affinity DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) receptors and (2) tumors via the enhanced permeability and retention (EPR) effect. The polymer conjugates were modified with the imaging probes for visualization with magnetic resonance (MR) and fluorescence imaging, respectively, and with poly(2-methyl-2-oxazoline) (POX) to lower unwanted accumulation in internal organs and to slow down the biodegradation rate. We demonstrated that these polymer conjugates were successfully accumulated in tumors, SLNs and other lymph nodes. Modification with POX resulted in lower accumulation not only in internal organs, but also in lymph nodes and tumors. Importantly, we have shown that mannan-based polymer carriers are non-toxic and, when applied to an in vivo murine cancer model, and offer promising potential as the versatile imaging agents.
Department of Physiology Faculty of Science Charles University 128 00 Prague Czech Republic
Institute for Clinical and Experimental Medicine 140 21 Prague Czech Republic
Institute of Macromolecular Chemistry Czech Academy of Sciences 162 00 Prague Czech Republic
Zobrazit více v PubMed
Veronesi U., Paganelli G., Viale G., Luini A., Zurrida S., Galimberti V., Intra M., Veronesi P., Robertson C., Maisonneuve P., et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N. Engl. J. Med. 2003;349:546–553. doi: 10.1056/NEJMoa012782. PubMed DOI
Lyman G.H., Giuliano A.E., Somerfield M.R., Benson A.B., 3rd, Bodurka D.C., Burstein H.J., Cochran A.J., Hiram S.C., 3rd, Edge S.B., Galper S., et al. American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J. Clin. Oncol. 2005;23:7703–7720. doi: 10.1200/JCO.2005.08.001. PubMed DOI
Qiu S.Q., Zhang G.J., Jansen L., de Vries J., Schroder C.P., de Vries E.G.E., van Dam G.M. Evolution in sentinel lymph node biopsy in breast cancer. Crit. Rev. Oncol. Hematol. 2018;123:83–94. doi: 10.1016/j.critrevonc.2017.09.010. PubMed DOI
Karaman S., Detmar M. Mechanisms of lymphatic metastasis. J. Clin. Investig. 2014;124:922–928. doi: 10.1172/JCI71606. PubMed DOI PMC
Evertsson M., Kjellman P., Cinthio M., Andersson R., Tran T.A., In’t Zandt R., Grafström G., Toftevall H., Fredriksson S., Ingvar C., et al. Combined Magnetomotive ultrasound, PET/CT, and MR imaging of (68)Ga-labelled superparamagnetic iron oxide nanoparticles in rat sentinel lymph nodes in vivo. Sci. Rep. 2017;7:4824. doi: 10.1038/s41598-017-04396-z. PubMed DOI PMC
Dong Y., Feng Q., Yang W., Lu Z., Deng C., Zhang L., Lian Z., Liu J., Luo X., Pei S., et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI. Eur. Radiol. 2018;28:582–591. doi: 10.1007/s00330-017-5005-7. PubMed DOI
Krischer B., Forte S., Niemann T., Kubik-Huch R.A., Leo C. Feasibility of breast MRI after sentinel procedure for breast cancer with superparamagnetic tracers. Eur. J. Surg. Oncol. 2018;44:74–79. doi: 10.1016/j.ejso.2017.11.016. PubMed DOI
Garcia-Uribe A., Erpelding T.N., Krumholz A., Ke H., Maslov K., Appleton C., Margenthaler J.A., Wang L.V. Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer. Sci. Rep. 2015;5:15748. doi: 10.1038/srep15748. PubMed DOI PMC
Joseph F.J., van Oepen A., Friebe M. Breast sentinel lymph node biopsy with imaging towards minimally invasive surgery. Biomed. Tech. 2017;62:547–555. doi: 10.1515/bmt-2016-0164. PubMed DOI
Jain R., Dandekar P., Patravale V. Diagnostic nanocarriers for sentinel lymph node imaging. J. Control. Release. 2009;138:90–102. doi: 10.1016/j.jconrel.2009.05.010. PubMed DOI
Mantovani A., Schioppa T., Porta C., Allavena P., Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006;25:315–322. doi: 10.1007/s10555-006-9001-7. PubMed DOI
Sica A., Schioppa T., Mantovani A., Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur. J. Cancer. 2006;42:717–727. doi: 10.1016/j.ejca.2006.01.003. PubMed DOI
Ezekowitz R.A., Williams D.J., Koziel H., Armstrong M.Y., Warner A., Richards F.F., Rose R.M. Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nat. Cell Biol. 1991;351:155–158. doi: 10.1038/351155a0. PubMed DOI
Garcia-Vallejo J.J., van Kooyk Y. The physiological role of DC-SIGN: A tale of mice and men. Trends Immunol. 2013;34:482–486. doi: 10.1016/j.it.2013.03.001. PubMed DOI
Hu J., Wei P., Seeberger P.H., Yin J. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chem. Asian J. 2018;13:3448–3459. doi: 10.1002/asia.201801088. PubMed DOI
Lepenies B., Lee J., Sonkaria S. Targeting C-type lectin receptors with multivalent carbohydrate ligands. Adv. Drug Deliver Rev. 2013;65:1271–1281. doi: 10.1016/j.addr.2013.05.007. PubMed DOI
Feinberg H., Mitchell D.A., Drickamer K., Weis W.I. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science. 2001;294:2163–2166. doi: 10.1126/science.1066371. PubMed DOI
Feinberg H., Castelli R., Drickamer K., Seeberger P.H., Weis W.I. Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins. J. Biol. Chem. 2007;282:4202–4209. doi: 10.1074/jbc.M609689200. PubMed DOI PMC
Guo Y., Feinberg H., Conroy E., Mitchell D.A., Alvarez R., Blixt O., Taylor M.E., Weis W.I., Drickamer K. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol. 2004;11:591–598. doi: 10.1038/nsmb784. PubMed DOI
Yong S.B., Chung J.Y., Song Y., Kim J., Ra S., Kim Y.H. Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells. Biomaterials. 2019;219:119401. doi: 10.1016/j.biomaterials.2019.119401. PubMed DOI
Gardner A., Ruffell B. Dendritic Cells and Cancer Immunity. Trends Immunol. 2016;37:855–865. doi: 10.1016/j.it.2016.09.006. PubMed DOI PMC
Chiang C.L., Kandalaft L.E. In vivo cancer vaccination: Which dendritic cells to target and how? Cancer Treat. Rev. 2018;71:88–101. doi: 10.1016/j.ctrv.2018.10.012. PubMed DOI PMC
Buckeridge M.S. Seed cell wall storage polysaccharides: Models to understand cell wall biosynthesis and degradation. Plant Physiol. 2010;154:1017–1023. doi: 10.1104/pp.110.158642. PubMed DOI PMC
Edwards M., Scott C., Gidley M.J., Reid J.S. Control of mannose/galactose ratio during galactomannan formation in developing legume seeds. Planta. 1992;187:67–74. doi: 10.1007/BF00201625. PubMed DOI
Pauly M., Gille S., Liu L., Mansoori N., de Souza A., Schultink A., Xiong G. Hemicellulose biosynthesis. Planta. 2013;238:627–642. doi: 10.1007/s00425-013-1921-1. PubMed DOI
Dos Santos M.A., Grenha A. Polysaccharide nanoparticles for protein and Peptide delivery: Exploring less-known materials. Adv. Protein Chem. Struct. Biol. 2015;98:223–261. doi: 10.1016/bs.apcsb.2014.11.003. PubMed DOI
Zia F., Zia K.M., Zuber M., Ahmad H.B., Muneer M. Glucomannan based polyurethanes: A critical short review of recent advances and future perspectives. Int. J. Biol. Macromol. 2016;87:229–236. doi: 10.1016/j.ijbiomac.2016.02.058. PubMed DOI
Fang J., Nakamura H., Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011;63:136–151. doi: 10.1016/j.addr.2010.04.009. PubMed DOI
Taurin S., Nehoff H., Greish K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J. Control. Release. 2012;164:265–275. doi: 10.1016/j.jconrel.2012.07.013. PubMed DOI
Barar J., Omidi Y. Dysregulated pH in Tumor Microenvironment Checkmates Cancer Therapy. Bioimpacts. 2013;3:149–162. doi: 10.5681/bi.2013.036. PubMed DOI PMC
Omidi Y., Barar J. Targeting tumor microenvironment: Crossing tumor interstitial fluid by multifunctional nanomedicines. Bioimpacts. 2014;4:55–67. doi: 10.5681/bi.2014.021. PubMed DOI PMC
Sindhwani S., Syed A.M., Ngai J., Kingston B.R., Maiorino L., Rothschild J., Macmillan P., Zhang Y., Rajesh N.U., Hoang T., et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020;19:566–575. doi: 10.1038/s41563-019-0566-2. PubMed DOI
Duncan R., Gilbert H.R., Carbajo R.J., Vicent M.J. Polymer masked-unmasked protein therapy. 1. Bioresponsive dextrin-trypsin and -melanocyte stimulating hormone conjugates designed for alpha-amylase activation. Biomacromolecules. 2008;9:1146–1154. doi: 10.1021/bm701073n. PubMed DOI
Hreczuk-Hirst D., Chicco D., German L., Duncan R. Dextrins as potential carriers for drug targeting: Tailored rates of dextrin degradation by introduction of pendant groups. Int. J. Pharm. 2001;230:57–66. doi: 10.1016/S0378-5173(01)00859-6. PubMed DOI
Luxenhofer R., Han Y., Schulz A., Tong J., He Z., Kabanov A.V., Jordan R. Poly(2-oxazoline)s as polymer therapeutics. Macromol. Rapid Commun. 2012;33:1613–1631. doi: 10.1002/marc.201200354. PubMed DOI PMC
Amoozgar Z., Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev. Nanomed Nanobiotechnol. 2012;4:219–233. doi: 10.1002/wnan.1157. PubMed DOI PMC
Pidhatika B., Rodenstein M., Chen Y., Rakhmatullina E., Muhlebach A., Acikgoz C., Textor M., Konradi R. Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings. Biointerphases. 2012;7:1. doi: 10.1007/s13758-011-0001-y. PubMed DOI
Grube M., Leiske M.N., Schubert U.S., Nischang I. POx as an Alternative to PEG? A Hydrodynamic and Light Scattering Study. Macromolecules. 2018;51:1905–1916. doi: 10.1021/acs.macromol.7b02665. DOI
Yang Q., Lai S.K. Anti-PEG immunity: Emergence, characteristics, and unaddressed questions. Wires Nanomed Nanobiotechnol. 2015;7:655–677. doi: 10.1002/wnan.1339. PubMed DOI PMC
Zhang P., Sun F., Liu S.J., Jiang S.Y. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J. Control. Release. 2016;244:184–193. doi: 10.1016/j.jconrel.2016.06.040. PubMed DOI PMC
Rabyk M., Galisova A., Jiratova M., Patsula V., Srbova L., Loukotova L., Parnica J., Jirak D., Stepaneka P., Hruby M. Mannan-based conjugates as a multimodal imaging platform for lymph nodes. J. Mater. Chem. B. 2018;6:2584–2596. doi: 10.1039/C7TB02888A. PubMed DOI
Suk J.S., Xu Q., Kim N., Hanes J., Ensign L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016;99 Pt A:28–51. doi: 10.1016/j.addr.2015.09.012. PubMed DOI PMC
Naahidi S., Jafari M., Edalat F., Raymond K., Khademhosseini A., Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release. 2013;166:182–194. doi: 10.1016/j.jconrel.2012.12.013. PubMed DOI
Oh N., Park J.H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 2014;9(Suppl. 1):51–63. doi: 10.2147/IJN.S26592. PubMed DOI PMC
Chang Y., Lee G.H., Kim T.J., Chae K.S. Toxicity of magnetic resonance imaging agents: Small molecule and nanoparticle. Curr. Top. Med. Chem. 2013;13:434–445. doi: 10.2174/1568026611313040004. PubMed DOI
Zhou Z., Lu Z.R. Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013;5:1–18. doi: 10.1002/wnan.1198. PubMed DOI PMC
Lansman J.B. Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit. J. Gen. Physiol. 1990;95:679–696. doi: 10.1085/jgp.95.4.679. PubMed DOI PMC
LysoTracker® and LysoSensor™ Probes. [(accessed on 11 November 2018)];2018 Available online: https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp07525.pdf&title=THlzb1RyYWNrZXIgYW5kIEx5c29TZW5zb3IgUHJvYmVz.
Hoechst Stains. [(accessed on 11 November 2018)];2018 Available online: https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp21486.pdf&title=SG9lY2hzdCBTdGFpbnM=
Freshney R.I. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. Wiley; Hoboken, NJ, USA: 2011.