Some recent data on sperm morphology and motility kinetics in Atlantic cod (Gadus morhua L.)
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CENAKVA - LM2018099
Ministerstvo Školství, Mládeže a Tělovýchovy
Biodiversity project - CZ.02.1.01./0.0/0.0/16_025/0007370
Ministerstvo Školství, Mládeže a Tělovýchovy
Hatch project - 1013854
USDA National Institute of Food and Agriculture
PubMed
33405059
DOI
10.1007/s10695-020-00915-4
PII: 10.1007/s10695-020-00915-4
Knihovny.cz E-zdroje
- Klíčová slova
- Beat frequency, Electron microscopy, Ions, Osmolality, Sperm ultrastructure, Sperm velocity,
- MeSH
- Gadus morhua fyziologie MeSH
- motilita spermií fyziologie MeSH
- osmolární koncentrace MeSH
- spermie fyziologie ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Studying biology of sperm provides valuable information to optimize artificial reproduction and is crucial for sustainable aquaculture. Here, we investigated morphology of spermatozoon in Atlantic cod (Gadus morhua) using transmission and scanning electron microscopy. Furthermore, spermatozoa motility kinetics at different osmolalities were studied using computer-assisted sperm analysis software. The spermatozoon lacked an acrosome and consisted of a head, midpiece, and flagellum. The head of spermatozoa was round, oval, and rather elongated in shape, showing high variations in dimensions. There were up to 6 mitochondria that encircled the proximal part of the flagellum. The proximal and distal centrioles were located within the nuclear notch and arranged orthogonal to each other. The axoneme had a typical 9 + 2 microtubule structure. The flagellar length of spermatozoon was 66.94 ± 0.46 μm. Spermatozoa were immotile in the seminal plasma. Dilution of sperm with natural seawater (1100 mOsmol/kg) resulted in initiation of motility for 91.0 ± 3.4% of spermatozoa with average velocity of 86.2 ± 2.3 μm/s and beating frequency of 52 Hz. The duration of spermatozoa motility was > 6 min; however, the percentage of motile spermatozoa decreased at 60 s post-activation. When osmolality of natural seawater was modified using distilled water or NaCl, spermatozoa motility was not initiated at ≤ 400 and ≥ 2500 mOsmol/kg, and the highest percentage of motility was observed at 730-1580 mOsmol/kg. In a sucrose solution, spermatozoa motility was initiated and suppressed at 600 and 1500 mOsmol/kg, respectively, and highest percentage of motility was observed at 800-1100 mOsmol/kg. Spermatozoon morphology comparisons within Gadiformes showed differences in dimensions of head and mitochondria, flagellar length, and number of mitochondria. The present study provides valuable data that can be used for phylogenetic implications based on spermatozoon morphology and for development of artificial fertilization and sperm cryopreservation protocols based on sperm motility.
Faculty of Biosciences and Aquaculture Nord University N 8049 Bodø Norway
School of Biology College of Science University of Tehran P O Box 14155 6455 Tehran Iran
School of Fisheries Aquaculture and Aquatic Sciences Auburn University Auburn AL 36849 USA
Toxicology Centre University of Saskatchewan Saskatoon Saskatchewan S7N 5B3 Canada
Zobrazit více v PubMed
Abascal FJ, Cosson J, Fauvel C (2007) Characterization of sperm motility in sea bass: the effect of heavy metals and physicochemical variables on sperm motility. J Fish Biol 70:509–522. https://doi.org/10.1111/j.1095-8649.2007.01322.x DOI
Alavi SMH, Cosson J (2005) Sperm motility in fishes: I. effects of pH and temperature. Cell Biol Int 29(2):101–110. https://doi.org/10.1016/j.cellbi.2004.11.021 PubMed DOI
Alavi SMH, Cosson J (2006) Sperm motility in fishes: (II) effects of ions and osmotic pressure. Cell Biol Int 30(1):1–14. https://doi.org/10.1016/j.cellbi.2005.06.004 PubMed DOI
Alavi SMH, Linhart O, Coward K, Rodina M (2008) Fish spermatology: implication for aquaculture management. In: Alavi SMH, Cosson J, Coward K, Rafiee G (eds) Fish spermatology. Alpha Science Ltd, Oxford, pp 397–460
Alavi SMH, Hatef A, Pšenička M, Kašpar V, Boryshpolets S, Dzyuba B, Cosson J, Bondarenko V, Rodina M, Gela D, Linhart O (2012) Sperm biology and control of reproduction in sturgeon: (II) sperm morphology, acrosome reaction, motility and cryopreservation. Rev Fish Biol Fisheries 22(4):861–886. https://doi.org/10.1007/s11160-012-9270-x DOI
Alavi SMH, Ciereszko A, Hatef A, Křišťan J, Dzyuba B, Boryshpolets S, Rodina M, Cosson J, Linhart O (2015) Sperm morphology, physiology, motility and cryopreservation in Percidae. In: biology and culture of percid fishes: principles and practices, Kestemont, P., Dabrowski, K., Summerfelt, R.C. (Eds.). Springer, Dordrecht, the Netherlands, pp. 163–191
Alavi SMH, Cosson J, Bondarenko O, Linhart O (2019) Sperm motility in fishes: (III) diversity of regulatory signals from membrane to the axoneme. Theriogenology 136:143–165. https://doi.org/10.1016/j.theriogenology.2019.06.038 PubMed DOI
Baccetti B (1991) Comparative spermatology 20 years after. Raven Press, New York
Baccetti B, Burrini AG, Callaini G, Gibertini G, Mazzini M, Zerunian S (1984) Fish germinal cells. I. Comparative spermatology of seven cyprinid species. Gamete Res 10:373–396 DOI
Billard R (1986) Spermatogenesis and spermatology of some teleost fish species. Reprod Nutr Dev 26(4):877–920. https://doi.org/10.1051/rnd:19860601 DOI
Billard R (1992) Reproduction in rainbow trout: sex differentiation, dynamics of gametogenesis, biology and preservation of gametes. Aquaculture 100:263–298 DOI
Billard R, Cosson MP (1990) The energetics of fish sperm motility. In: Gagnon C (ed) Controls of sperm motility, biological and clinical aspects. CRC Press, Boca Raton, Florida, pp 153–173
Billard R, Cosson J, Crim LW (1993) Motility of fresh and aged halibut sperm. Aquat Living Resour 6:67–75. https://doi.org/10.1051/alr:1993008 DOI
Blecha M, Dzyuba B, Boryshpolets S, Horokhovatskyi Y, Dadras H, Malinovskyi O, Sampels S, Policar T (2018) Spermatozoa quality and sperm lipid composition in intensively cultured and wild burbot (Lota lota). Anim Reprod Sci 198:129–136. https://doi.org/10.1016/j.anireprosci.2018.09.011 PubMed DOI
Butts IAE, Litvak MK, Trippel EA (2010a) Seasonal variations in seminal plasma and sperm characteristics of wild-caught and cultivated Atlantic cod, Gadus morhua. Theriogenology 73:873–885. https://doi.org/10.1016/j.theriogenology.2009.11.011 PubMed DOI
Butts IAE, Rideout RM, Burt K, Samuelson S, Lush L, Litvak MK, Trippel EA, Hamoutene D (2010b) Quantitative semen parameters of Atlantic cod (Gadus morhua) and their physiological relationships with sperm activity and morphology. J Appl Ichthyol 26:756–762. https://doi.org/10.1111/j.1439-0426.2010.01545.x DOI
Butts IAE, Trippel EA, Ciereszko A, Soler C, Słowińska M, Alavi SMH, Litvak MK, Babiak I (2011) Seminal plasma biochemistry and spermatozoa characteristics of Atlantic cod (Gadus morhua L.) of wild and cultivated origin. Comp Biochem Physiol A Mol Integr Physiol 159(1):16–24. https://doi.org/10.1016/j.cbpa.2011.01.014 PubMed DOI
Cabrita E, Robles V, Herraez P (2009) Methods in reproductive aquaculture: marine and freshwater species. CRC Press
Cohen DM, lnada T, lwamoto T, Nadia Scialabba N (1990) FAO species catalogue, Vol.10. Gadiform fishes of the world (Order Gadiformes). Food and Agriculture Organization of the United Nations, Rome
Cosson J (2008) Methods to analyse the movements of the spermatozoa and their flagella. In: Alavi SMH, Cosson J, Coward K, Rafiee G (eds) Fish spermatology. Alpha Science Ltd, Oxford, pp 63–102
Cosson J (2010) Frenetic activation of fish spermatozoa flagella entails short-term motility, portending their precocious decadence. J Fish Biol 76:240–279. https://doi.org/10.1111/j.1095-8649.2009.02504.x PubMed DOI
Cosson J, Groison AL, Suquet M, Fauvel C, Dreanno C, Billard R (2008a) Marine fish spermatozoa: racing ephemeral swimmers. Reproduction 136:277–294. https://doi.org/10.1530/REP-07-0522 PubMed DOI
Cosson J, Groison AL, Suquet M, Fauvel C, Dreanno C, Billard R (2008b) Studying sperm motility in marine fish: an overview on the state of the art. J Appl Ichthyol 24:460–486. https://doi.org/10.1111/j.1439-0426.2008.01151.x DOI
Cosson J, Groison AL, Fauvel C, Suquet M (2010) Description of hake (Merluccius merluccius) spermatozoa: flagellar wave characteristics and motility parameters in various situations. J Appl Ichthyol 26:644–652. https://doi.org/10.1111/j.1439-0426.2010.01563.x DOI
Dadras H, Golpour A, Dzyuba B, Kristan J, Policar T (2019) Ultrastructural feature of spermatogenic cells and spermatozoon in cultured burbot Lota lota. Tissue Cell 61:1–7. https://doi.org/10.1016/j.tice.2019.08.005 PubMed DOI
Darszon A, Labarca P, Nishigaki T, Espinosa F (1999) Ion channels in sperm physiology. Physiol Rev 79:481–510. https://doi.org/10.1152/physrev.1999.79.2.481 PubMed DOI
Fürböck S, Lahnsteiner F, Patzner RA (2009) A fine structural review on the spermatozoa of Cyprinidae with attention to their phylogenetic implications. Histol Histopathol 24, 1233-1244. https://doi.org/10.14670/HH-24.1233
Groison A-L, Fauvel C, Suquet M, Kjesbu OS, Le Coz JR, Mayer I, Cosson J (2010a) Some characteristics of sperm motility in European hake (Merluccius merluccius L., 1758). J Appl Ichthyol 2010;26:682–289. https://doi.org/10.1111/j.1439-0426.2010.01541.x
Groison AL, Suquet M, Cosson J, Mayer I, Severe A, Bouquet JM, Geffen AJ, Utne-Palm AC, Kjesbu OS (2010b) Sperm motility in European hake, Merluccius merluccius, and characterization of its spermatozoa concentration and volume, spermatocrit, osmolality and pH. Aquaculture 301:31–36. https://doi.org/10.1016/j.aquaculture.2010.01.026 DOI
Hara M, Okiyama M (1998) An ultrastructural review on the spermatozoa of Japanese fishes. Bull Oce Res Inst Univ Tokyo 33:1–138
Hatef A, Alavi SMH, Linhartova Z, Rodina M, Policar T, Linhart O (2010) In vitro effects of Bisphenol A on sperm motility characteristics in Perca fluviatilis L. (Percidae; Teleostei). J Appl Ichthyol 26(5):696–701. https://doi.org/10.1111/j.1439-0426.2010.01543.x DOI
Inaba K (2011) Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol Hum Reprod 17(8):524–538. https://doi.org/10.1093/molehr/gar034 PubMed DOI
Ishijima S, Hara M, Okiyama M (1998) Comparative studies on spermatozoan motility of Japanese fishes. Bull Oce Res Inst Univ Tokyo 33:139–152
Jamieson BGM (1991) Fish evolution and systematics: evidence from spermatozoa. Cambridge University Press, Cambridge
Jamieson BGM (2009) Reproductive biology and phylogeny of fishes (Agnathans and bony fishes), Volumes 8A and 8B. Science Publishers Inc., New Hampshire DOI
Kudo S (1991) Fertilization, cortical reaction, polyspermy-preventing and anti-microbial mechanisms in fish eggs. Bull Inst Zool Acad Sin 16:313–340
Lahnsteiner F, Patzner R (1998) Sperm motility in the marine teleosts Boops boops, Diplodus sargus, Mullus barbatus and Trachurus mediterraneus. J Fish Biol 52:726–742
Lahnsteiner F, Patzner RA (2008) Sperm morphology and ultrastructure in fish. In: Alavi SMH, Cosson J, Coward K, Rafiee G (eds) Fish spermatology. Alpha Science Ltd, Oxford, pp 1–61
Lahnsteiner F, Weismann T, Patzner RA (1994) Fine structure of spermatozoa of the burbot, Lota lota (Gadidae, Pisces). J Submicr Cytol Path 26(445–447):35400004697737.0170
Lahnsteiner F, Berger R, Weismand T, Patzner R (1997) Sperm motility and seminal fluid composition in the burbot, Lota lota. J Appl Ichthyol 13:113–119. https://doi.org/10.1111/j.1439-0426.1997.tb00110.x DOI
Mattei X (1991) Spermatozoon ultrastructure and its systematic implications in fishes. Can J Zool 69:3038–3055 DOI
Medina A, Megina C, Abascal FJ, Calzada A (2003) The sperm ultrastructure of Merluccius merluccius (Teleostei, Gadiformes): phylogenetic considerations. Acta Zool 84:131–137 DOI
Mizuno K, Padma P, Konno A, Satouh Y, Ogawa K, Inaba K (2009) A novel neuronal calcium sensor family protein, calaxin, is a potential Ca PubMed DOI
Mora C, Tittensor DP, Myers RA (2008) The completeness of taxonomic inventories for describing the global diversity and distribution of marine fishes. Proc Roy Soc B 275:149e55–149e149155. https://doi.org/10.1098/rspb.2007.1315
Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9:e1001127. https://doi.org/10.1371/journal.pbio.1001127 PubMed DOI PMC
Morisawa M (1985) Initiation mechanism of sperm motility at spawning in teleosts. Zool Sci 2:605–615
Morisawa M (2008) Adaptation and strategy for fertilization in the sperm of teleosts fish. J Appl Ichthyol 24:362–370. https://doi.org/10.1111/j.1439-0426.2008.01126.x DOI
Morrison CM (1990) Histology of Atlantic cod Gadus morhua: an atlas. Part 3. Reproductive tract. Can. Special Publ Fish Aquat Sci 100:1–177
Nelson JS (2006) Fishes of the world, 4th edn. John Wiley & Sons, Hoboken, NJ
Oda A, Morisawa M (1993) Rises of intracellular Ca DOI
Peruzzi S, Rudolfsen G, Primicerio R, Frantzen M, Kaurić G (2009) Milt characteristics of diploid and triploid Atlantic cod (Gadus morhua L.). Aqua Res 40(10):1160–1169. https://doi.org/10.1111/j.1365-2109.2009.02212.x DOI
Rebours C, Ottesen OH (2013) Ultrastructure of spermatozoa of the Atlantic cod Gadus morhua L. observed by scanning and transmission electron microscopy. Anim Reprod Sci 139:155–161. https://doi.org/10.1016/j.anireprosci.2013.03.017 PubMed DOI
Rideout RM, Trippel EA, Litvak MK (2004) Relationship between sperm density, spermatocrit, sperm motility and spawning date in wild and cultured haddock. J Fish Biol 65:319–332. https://doi.org/10.1111/j.1095-8649.2004.00451.x DOI
Rouxel C, Suquet M, Cosson J, Severe A, Quemener L, Fauvel C (2008) Changes in Atlantic cod (Gadus morhua L.) sperm quality during the spawning season. Aqua Res 39:434–440. https://doi.org/10.1111/j.1365-2109.2007.01852.x DOI
Tuset VM, Trippel EA, de Monserrat J (2008) Sperm morphology and its influence on swimming speed in Atlantic cod. J Appl Ichthyol 24:398–405. https://doi.org/10.1111/j.1439-0426.2008.01125.x DOI
Westin L, Nissling A (1991) Effects of salinity on spermatozoa motility, percentage of fertilized eggs and egg development of Baltic cod (Gadus morhua), and implications for cod stock fluctuations in the Baltic. Mar Biol 108:5–9 DOI