Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates: In Vivo Virulence Assessment in Galleria mellonella and Potential Therapeutics by Polycationic Oligoethyleneimine
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UIDB/04565/2020
Fundação para a ciência e Tecnologia
PTDC/MEC-ONC/29327/2017
Fundação para a Ciência e a Tecnologia
SAICTPAC/0019/2015
Fundação para a Ciência e a Tecnologia
PubMed
33430101
PubMed Central
PMC7826767
DOI
10.3390/antibiotics10010056
PII: antibiotics10010056
Knihovny.cz E-zdroje
- Klíčová slova
- Galleria mellonella infection model, KPC and OXA-48-like carbapenemases, Klebsiella pneumoniae, linear oligoethyleneimine hydrochloride,
- Publikační typ
- časopisecké články MeSH
Klebsiella pneumoniae, one of the most common pathogens found in hospital-acquired infections, is often resistant to multiple antibiotics. In fact, multidrug-resistant (MDR) K. pneumoniae producing KPC or OXA-48-like carbapenemases are recognized as a serious global health threat. In this sense, we evaluated the virulence of K. pneumoniae KPC(+) or OXA-48(+) aiming at potential antimicrobial therapeutics. K. pneumoniae carbapenemase (KPC) and the expanded-spectrum oxacillinase OXA-48 isolates were obtained from patients treated in medical care units in Lisbon, Portugal. The virulence potential of the K. pneumonia clinical isolates was tested using the Galleria mellonella model. For that, G. mellonella larvae were inoculated using patients KPC(+) and OXA-48(+) isolates. Using this in vivo model, the KPC(+) K. pneumoniae isolates showed to be, on average, more virulent than OXA-48(+). Virulence was found attenuated when a low bacterial inoculum (one magnitude lower) was tested. In addition, we also report the use of a synthetic polycationic oligomer (L-OEI-h) as a potential antimicrobial agent to fight infectious diseases caused by MDR bacteria. L-OEI-h has a broad-spectrum antibacterial activity and exerts a significantly bactericidal activity within the first 5-30 min treatment, causing lysis of the cytoplasmic membrane. Importantly, the polycationic oligomer showed low toxicity against in vitro models and no visible cytotoxicity (measured by survival and health index) was noted on the in vivo model (G. mellonella), thus L-OEI-h is foreseen as a promising polymer therapeutic for the treatment of MDR K. pneumoniae infections.
Zobrazit více v PubMed
Aslam B., Wang W., Arshad M.I., Khurshid M., Muzammil S., Rasool M.H., Nisar M.A., Alvi R.F., Aslam M.A., Qamar M.U., et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018;11:1645–1658. doi: 10.2147/IDR.S173867. PubMed DOI PMC
Coates A.R., Halls G., Hu Y. Novel classes of antibiotics or more of the same? Br. J. Pharmacol. 2011;163:184–194. doi: 10.1111/j.1476-5381.2011.01250.x. PubMed DOI PMC
Breijyeh Z., Jubeh B., Karaman R. Resistance of Gram-Negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020;25:1340. doi: 10.3390/molecules25061340. PubMed DOI PMC
Theuretzbacher U., Outterson K., Engel A., Karlén A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 2020;18:275–285. doi: 10.1038/s41579-019-0288-0. PubMed DOI PMC
Ventola C.L. The antibiotic resistance crisis: Part 1: Causes and threats. PT. 2015;40:277–283. PubMed PMC
Nordmann P., Cuzon G., Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis. 2009;9:228–236. doi: 10.1016/S1473-3099(09)70054-4. PubMed DOI
Molton J.S., Tambyah P.A., Ang B.S., Ling M.L., Fisher D.A. The global spread of healthcare-associated multidrug-resistant bacteria: A perspective from Asia. Clin. Infect. Dis. 2013;56:1310–1318. doi: 10.1093/cid/cit020. PubMed DOI
Tzouvelekis L.S., Markogiannakis A., Psichogiou M., Tassios P.T., Daikos G.L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin. Microbiol. Rev. 2012;25:682–707. doi: 10.1128/CMR.05035-11. PubMed DOI PMC
Peleg A.Y., Hooper D.C. Hospital-acquired infections due to Gram-negative bacteria. N. Engl. J. Med. 2010;362:1804–1813. doi: 10.1056/NEJMra0904124. PubMed DOI PMC
Halat D.H., Moubareck C.A. The current burden of carbapenemases: Review of significant properties and dissemination among Gram-negative bacteria. Antibiotics (Basel) 2020;9:186. doi: 10.3390/antibiotics9040186. PubMed DOI PMC
Mil-Homens D., Bernardes N., Fialho A.M. The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen Burkholderia cenocepacia. FEMS Microbiol. Lett. 2012;328:61–69. doi: 10.1111/j.1574-6968.2011.02476.x. PubMed DOI
Cutuli M.A., Petronio G.P., Vergalito F., Magnifico I., Pietrangelo L., Venditti N., Di Marco R. Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. Virulence. 2019;10:527–541. doi: 10.1080/21505594.2019.1621649. PubMed DOI PMC
Jander G., Rahme L.G., Ausubel F.M. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 2000;182:3843–3845. doi: 10.1128/JB.182.13.3843-3845.2000. PubMed DOI PMC
Mil-Homens D., Barahona S., Moreira R.N., Silva I.J., Pinto S.N., Fialho A.M., Arraiano C.M. Stress response protein BolA influences fitness and promotes Salmonella enterica serovar Typhimurium virulence. Appl. Environ. Microbiol. 2018;84:e02850-17. doi: 10.1128/AEM.02850-17. PubMed DOI PMC
Vilmos P., Kurucz E. Insect immunity: Evolutionary roots of the mammalian innate immune system. Immunol. Lett. 1998;62:59–66. doi: 10.1016/S0165-2478(98)00023-6. PubMed DOI
Hoffmann J.A. Innate immunity of insects. Curr. Opin. Immunol. 1995;7:4–10. doi: 10.1016/0952-7915(95)80022-0. PubMed DOI
Papst L., Beović B., Pulcini C., Durante-Mangoni E., Rodríguez-Baño J., Kaye K.S., Daikos G.L., Raka L., Paul M. Antibiotic treatment of infections caused by carbapenem-resistant Gram-negative bacilli: An international ESCMID cross-sectional survey among infectious diseases specialists practicing in large hospitals. Clin. Microbiol. Infect. 2018;24:1070–1076. doi: 10.1016/j.cmi.2018.01.015. PubMed DOI
Karakonstantis S., Kritsotakis E.I., Gikas A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: An approach based on the mechanisms of resistance to carbapenems. Infection. 2020;48:835–851. doi: 10.1007/s15010-020-01520-6. PubMed DOI PMC
Correia V.G., Bonifácio V.D.B., Raje V.P., Casimiro T., Moutinho G., da Silva C.L., Pinho M.G., Aguiar-Ricardo A. Oxazoline-based antimicrobial oligomers: Synthesis by CROP using supercritical CO2. Macromol. Biosci. 2011;11:1128–1137. doi: 10.1002/mabi.201100126. PubMed DOI
McLaughlin M.M., Advincula M.R., Malczynski M., Barajas G., Qi C., Scheetz M.H. Quantifying the clinical virulence of Klebsiella pneumoniae producing carbapenemase Klebsiella pneumoniae with a Galleria mellonella model and a pilot study to translate to patient outcomes. BMC Infect. Dis. 2014;14:31. doi: 10.1186/1471-2334-14-31. PubMed DOI PMC
Malanovic N., Lohner K. Antimicrobial peptides targeting Gram-positive bacteria. Pharmaceuticals (Basel) 2016;9:59. doi: 10.3390/ph9030059. PubMed DOI PMC
Lohner K. New strategies for novel antibiotics: Peptides targeting bacterial cell membranes. Gen. Physiol. Biophys. 2009;28:105–116. doi: 10.4149/gpb_2009_02_105. PubMed DOI
Loh J.M., Adenwalla N., Wiles S., Proft T. Galleria mellonella larvae as an infection model for group A streptococcus. Virulence. 2013;4:419–428. doi: 10.4161/viru.24930. PubMed DOI PMC
Carmona-Ribeiro A.M., de Melo Carrasco L.D. Cationic antimicrobial polymers and their assemblies. Int. J. Mol. Sci. 2013;14:9906–9946. doi: 10.3390/ijms14059906. PubMed DOI PMC
Mahlapuu M., Håkansson J., Ringstad L., Björn C. Antimicrobial peptides: An emerging category of therapeutic agents. Front Cell Infect. Microbiol. 2016;6:194. doi: 10.3389/fcimb.2016.00194. PubMed DOI PMC
Kaplan J.B., Velliyagounder K., Ragunath C., Rohde H., Mack D., Knobloch J.K., Ramasubbu N. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J. Bacteriol. 2004;186:8213–8220. doi: 10.1128/JB.186.24.8213-8220.2004. PubMed DOI PMC
Matsuzaki K. Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochimica Biophysica Acta (BBA) Biomembranes. 1999;1462:1–10. doi: 10.1016/S0005-2736(99)00197-2. PubMed DOI
Kaplan C.W., Sim J.H., Shah K.R., Kolesnikova-Kaplan A., Shi W., Eckert R. Selective membrane disruption: Mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob. Agents Chemother. 2011;55:3446–3452. doi: 10.1128/AAC.00342-11. PubMed DOI PMC
Wimley W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol. 2010;5:905–917. doi: 10.1021/cb1001558. PubMed DOI PMC
World Health Organization Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. [(accessed on 6 January 2021)];2017 Available online: https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en.
Palermo E.F., Lienkamp K., Gillies E.R., Ragogna P.J. Antibacterial activity of polymers: Discussions on the nature of amphiphilic balance. Angew. Chem. Int. Ed. 2019;58:3690–3693. doi: 10.1002/anie.201813810. PubMed DOI
Kenawy E.-R., Worley S.D., Broughton R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules. 2007;8:1359–1384. doi: 10.1021/bm061150q. PubMed DOI
Wang G., Li X., Wang Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44:D1087–D1093. doi: 10.1093/nar/gkv1278. PubMed DOI PMC
Kuroda K., Caputo G.A., DeGrado W.F. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chemistry. 2009;15:1123–1133. doi: 10.1002/chem.200801523. PubMed DOI PMC
Palermo E.F., Kuroda K. Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules. 2009;10:1416–1428. doi: 10.1021/bm900044x. PubMed DOI
Palermo E.F., Lee D.K., Ramamoorthy A., Kuroda K. Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers. J. Phys. Chem. B. 2011;115:366–375. doi: 10.1021/jp1083357. PubMed DOI PMC
Al-Badri Z.M., Som A., Lyon S., Nelson C.F., Nusslein K., Tew G.N. Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers. Biomacromolecules. 2008;9:2805–2810. doi: 10.1021/bm800569x. PubMed DOI
Lin J., Qiu S., Lewis K., Klibanov A.M. Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol. Prog. 2002;18:1082–1086. doi: 10.1021/bp025597w. PubMed DOI
Curtis K.A., Miller D., Millard P., Basu S., Horkay F., Chandran P.L. Unusual salt and pH induced changes in polyethylenimine solutions. PLoS ONE. 2016;11:e0158147. doi: 10.1371/journal.pone.0158147. PubMed DOI PMC
Liu L., Xu K., Wang H., Tan P.K., Fan W., Venkatraman S.S., Li L., Yang Y.Y. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol. 2009;4:457–463. doi: 10.1038/nnano.2009.153. PubMed DOI
Yasir M., Dutta D., Willcox M.D.P. Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa. Sci. Rep. 2019;9:7063. doi: 10.1038/s41598-019-42440-2. PubMed DOI PMC
Kwon J.Y., Kim M.K., Mereuta L., Seo C.H., Luchian T., Park Y. Mechanism of action of antimicrobial peptide P5 truncations against Pseudomonas aeruginosa and Staphylococcus aureus. AMB Express. 2019;9:122. doi: 10.1186/s13568-019-0843-0. PubMed DOI PMC
Bengoechea J.A., Sa Pessoa J. Klebsiella pneumoniae infection biology: Living to counteract host defences. FEMS Microbiol. Rev. 2019;43:123–144. doi: 10.1093/femsre/fuy043. PubMed DOI PMC
Fleeman R.M., Macias L.A., Brodbelt J.S., Davies B.W. Defining principles that influence antimicrobial peptide activity against capsulated Klebsiella pneumoniae. Proc. Natl. Acad. Sci. USA. 2020;117:27620. doi: 10.1073/pnas.2007036117. PubMed DOI PMC
Liu X., Tang M., Zhang T., Hu Y., Zhang S., Kong L., Xue Y. Determination of a threshold dose to reduce or eliminate CdTe-induced toxicity in L929 cells by controlling the exposure dose. PLoS ONE. 2013;8:e59359. doi: 10.1371/journal.pone.0059359. PubMed DOI PMC
Venkatesh M., Barathi V.A., Goh E.T.L., Anggara R., Fazil M., Ng A.J.Y., Harini S., Aung T.T., Fox S.J., Liu S., et al. Antimicrobial activity and cell selectivity of synthetic and biosynthetic cationic polymers. Antimicrob. Agents Chemother. 2017;61 doi: 10.1128/AAC.00469-17. PubMed DOI PMC
Aguiar-Ricardo A., Bonifácio V.D.B., Casimiro T., Correia V.G. Supercritical carbon dioxide design strategies: From drug carriers to soft killers. Philos. Trans. A Math Phys. Eng. Sci. 2015;373 doi: 10.1098/rsta.2015.0009. PubMed DOI
Burckhardt I., Zimmermann S. Susceptibility testing of bacteria using Maldi-Tof Mass Spectrometry. Front. Microbiol. 2018;9:1744. doi: 10.3389/fmicb.2018.01744. PubMed DOI PMC
Edwards-Jones V., Claydon M.A., Evason D.J., Walker J., Fox A.J., Gordon D.B. Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J. Med. Microbiol. 2000;49:295–300. doi: 10.1099/0022-1317-49-3-295. PubMed DOI
Wiegand I., Hilpert K., Hancock R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008;3:163–175. doi: 10.1038/nprot.2007.521. PubMed DOI
Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI
García-Armesto M.R., Prieto M., García-López M.L., Otero A., Moreno B. Modern microbiological methods for foods: Colony count and direct count methods. A review. Microbiologia. 1993;9:1–13. PubMed
Mangoni M.L., Papo N., Barra D., Simmaco M., Bozzi A., Di Giulio A., Rinaldi A.C. Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. Biochem. J. 2004;380:859–865. doi: 10.1042/bj20031975. PubMed DOI PMC
Xu M., McCanna D.J., Sivak J.G. Use of the viability reagent PrestoBlue in comparison with alamarBlue and MTT to assess the viability of human corneal epithelial cells. J. Pharmacol. Toxicol. Methods. 2015;71:1–7. doi: 10.1016/j.vascn.2014.11.003. PubMed DOI
Pinheiro M., Lúcio M., Lima J.L., Reis S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine (Lond.) 2011;6:1413–1428. doi: 10.2217/nnm.11.122. PubMed DOI
Lepidopteran insects: emerging model organisms to study infection by enteropathogens