Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates: In Vivo Virulence Assessment in Galleria mellonella and Potential Therapeutics by Polycationic Oligoethyleneimine

. 2021 Jan 08 ; 10 (1) : . [epub] 20210108

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33430101

Grantová podpora
UIDB/04565/2020 Fundação para a ciência e Tecnologia
PTDC/MEC-ONC/29327/2017 Fundação para a Ciência e a Tecnologia
SAICTPAC/0019/2015 Fundação para a Ciência e a Tecnologia

Odkazy

PubMed 33430101
PubMed Central PMC7826767
DOI 10.3390/antibiotics10010056
PII: antibiotics10010056
Knihovny.cz E-zdroje

Klebsiella pneumoniae, one of the most common pathogens found in hospital-acquired infections, is often resistant to multiple antibiotics. In fact, multidrug-resistant (MDR) K. pneumoniae producing KPC or OXA-48-like carbapenemases are recognized as a serious global health threat. In this sense, we evaluated the virulence of K. pneumoniae KPC(+) or OXA-48(+) aiming at potential antimicrobial therapeutics. K. pneumoniae carbapenemase (KPC) and the expanded-spectrum oxacillinase OXA-48 isolates were obtained from patients treated in medical care units in Lisbon, Portugal. The virulence potential of the K. pneumonia clinical isolates was tested using the Galleria mellonella model. For that, G. mellonella larvae were inoculated using patients KPC(+) and OXA-48(+) isolates. Using this in vivo model, the KPC(+) K. pneumoniae isolates showed to be, on average, more virulent than OXA-48(+). Virulence was found attenuated when a low bacterial inoculum (one magnitude lower) was tested. In addition, we also report the use of a synthetic polycationic oligomer (L-OEI-h) as a potential antimicrobial agent to fight infectious diseases caused by MDR bacteria. L-OEI-h has a broad-spectrum antibacterial activity and exerts a significantly bactericidal activity within the first 5-30 min treatment, causing lysis of the cytoplasmic membrane. Importantly, the polycationic oligomer showed low toxicity against in vitro models and no visible cytotoxicity (measured by survival and health index) was noted on the in vivo model (G. mellonella), thus L-OEI-h is foreseen as a promising polymer therapeutic for the treatment of MDR K. pneumoniae infections.

Zobrazit více v PubMed

Aslam B., Wang W., Arshad M.I., Khurshid M., Muzammil S., Rasool M.H., Nisar M.A., Alvi R.F., Aslam M.A., Qamar M.U., et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018;11:1645–1658. doi: 10.2147/IDR.S173867. PubMed DOI PMC

Coates A.R., Halls G., Hu Y. Novel classes of antibiotics or more of the same? Br. J. Pharmacol. 2011;163:184–194. doi: 10.1111/j.1476-5381.2011.01250.x. PubMed DOI PMC

Breijyeh Z., Jubeh B., Karaman R. Resistance of Gram-Negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020;25:1340. doi: 10.3390/molecules25061340. PubMed DOI PMC

Theuretzbacher U., Outterson K., Engel A., Karlén A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 2020;18:275–285. doi: 10.1038/s41579-019-0288-0. PubMed DOI PMC

Ventola C.L. The antibiotic resistance crisis: Part 1: Causes and threats. PT. 2015;40:277–283. PubMed PMC

Nordmann P., Cuzon G., Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis. 2009;9:228–236. doi: 10.1016/S1473-3099(09)70054-4. PubMed DOI

Molton J.S., Tambyah P.A., Ang B.S., Ling M.L., Fisher D.A. The global spread of healthcare-associated multidrug-resistant bacteria: A perspective from Asia. Clin. Infect. Dis. 2013;56:1310–1318. doi: 10.1093/cid/cit020. PubMed DOI

Tzouvelekis L.S., Markogiannakis A., Psichogiou M., Tassios P.T., Daikos G.L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin. Microbiol. Rev. 2012;25:682–707. doi: 10.1128/CMR.05035-11. PubMed DOI PMC

Peleg A.Y., Hooper D.C. Hospital-acquired infections due to Gram-negative bacteria. N. Engl. J. Med. 2010;362:1804–1813. doi: 10.1056/NEJMra0904124. PubMed DOI PMC

Halat D.H., Moubareck C.A. The current burden of carbapenemases: Review of significant properties and dissemination among Gram-negative bacteria. Antibiotics (Basel) 2020;9:186. doi: 10.3390/antibiotics9040186. PubMed DOI PMC

Mil-Homens D., Bernardes N., Fialho A.M. The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen Burkholderia cenocepacia. FEMS Microbiol. Lett. 2012;328:61–69. doi: 10.1111/j.1574-6968.2011.02476.x. PubMed DOI

Cutuli M.A., Petronio G.P., Vergalito F., Magnifico I., Pietrangelo L., Venditti N., Di Marco R. Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. Virulence. 2019;10:527–541. doi: 10.1080/21505594.2019.1621649. PubMed DOI PMC

Jander G., Rahme L.G., Ausubel F.M. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 2000;182:3843–3845. doi: 10.1128/JB.182.13.3843-3845.2000. PubMed DOI PMC

Mil-Homens D., Barahona S., Moreira R.N., Silva I.J., Pinto S.N., Fialho A.M., Arraiano C.M. Stress response protein BolA influences fitness and promotes Salmonella enterica serovar Typhimurium virulence. Appl. Environ. Microbiol. 2018;84:e02850-17. doi: 10.1128/AEM.02850-17. PubMed DOI PMC

Vilmos P., Kurucz E. Insect immunity: Evolutionary roots of the mammalian innate immune system. Immunol. Lett. 1998;62:59–66. doi: 10.1016/S0165-2478(98)00023-6. PubMed DOI

Hoffmann J.A. Innate immunity of insects. Curr. Opin. Immunol. 1995;7:4–10. doi: 10.1016/0952-7915(95)80022-0. PubMed DOI

Papst L., Beović B., Pulcini C., Durante-Mangoni E., Rodríguez-Baño J., Kaye K.S., Daikos G.L., Raka L., Paul M. Antibiotic treatment of infections caused by carbapenem-resistant Gram-negative bacilli: An international ESCMID cross-sectional survey among infectious diseases specialists practicing in large hospitals. Clin. Microbiol. Infect. 2018;24:1070–1076. doi: 10.1016/j.cmi.2018.01.015. PubMed DOI

Karakonstantis S., Kritsotakis E.I., Gikas A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: An approach based on the mechanisms of resistance to carbapenems. Infection. 2020;48:835–851. doi: 10.1007/s15010-020-01520-6. PubMed DOI PMC

Correia V.G., Bonifácio V.D.B., Raje V.P., Casimiro T., Moutinho G., da Silva C.L., Pinho M.G., Aguiar-Ricardo A. Oxazoline-based antimicrobial oligomers: Synthesis by CROP using supercritical CO2. Macromol. Biosci. 2011;11:1128–1137. doi: 10.1002/mabi.201100126. PubMed DOI

McLaughlin M.M., Advincula M.R., Malczynski M., Barajas G., Qi C., Scheetz M.H. Quantifying the clinical virulence of Klebsiella pneumoniae producing carbapenemase Klebsiella pneumoniae with a Galleria mellonella model and a pilot study to translate to patient outcomes. BMC Infect. Dis. 2014;14:31. doi: 10.1186/1471-2334-14-31. PubMed DOI PMC

Malanovic N., Lohner K. Antimicrobial peptides targeting Gram-positive bacteria. Pharmaceuticals (Basel) 2016;9:59. doi: 10.3390/ph9030059. PubMed DOI PMC

Lohner K. New strategies for novel antibiotics: Peptides targeting bacterial cell membranes. Gen. Physiol. Biophys. 2009;28:105–116. doi: 10.4149/gpb_2009_02_105. PubMed DOI

Loh J.M., Adenwalla N., Wiles S., Proft T. Galleria mellonella larvae as an infection model for group A streptococcus. Virulence. 2013;4:419–428. doi: 10.4161/viru.24930. PubMed DOI PMC

Carmona-Ribeiro A.M., de Melo Carrasco L.D. Cationic antimicrobial polymers and their assemblies. Int. J. Mol. Sci. 2013;14:9906–9946. doi: 10.3390/ijms14059906. PubMed DOI PMC

Mahlapuu M., Håkansson J., Ringstad L., Björn C. Antimicrobial peptides: An emerging category of therapeutic agents. Front Cell Infect. Microbiol. 2016;6:194. doi: 10.3389/fcimb.2016.00194. PubMed DOI PMC

Kaplan J.B., Velliyagounder K., Ragunath C., Rohde H., Mack D., Knobloch J.K., Ramasubbu N. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J. Bacteriol. 2004;186:8213–8220. doi: 10.1128/JB.186.24.8213-8220.2004. PubMed DOI PMC

Matsuzaki K. Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochimica Biophysica Acta (BBA) Biomembranes. 1999;1462:1–10. doi: 10.1016/S0005-2736(99)00197-2. PubMed DOI

Kaplan C.W., Sim J.H., Shah K.R., Kolesnikova-Kaplan A., Shi W., Eckert R. Selective membrane disruption: Mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob. Agents Chemother. 2011;55:3446–3452. doi: 10.1128/AAC.00342-11. PubMed DOI PMC

Wimley W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol. 2010;5:905–917. doi: 10.1021/cb1001558. PubMed DOI PMC

World Health Organization Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. [(accessed on 6 January 2021)];2017 Available online: https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en.

Palermo E.F., Lienkamp K., Gillies E.R., Ragogna P.J. Antibacterial activity of polymers: Discussions on the nature of amphiphilic balance. Angew. Chem. Int. Ed. 2019;58:3690–3693. doi: 10.1002/anie.201813810. PubMed DOI

Kenawy E.-R., Worley S.D., Broughton R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules. 2007;8:1359–1384. doi: 10.1021/bm061150q. PubMed DOI

Wang G., Li X., Wang Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44:D1087–D1093. doi: 10.1093/nar/gkv1278. PubMed DOI PMC

Kuroda K., Caputo G.A., DeGrado W.F. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chemistry. 2009;15:1123–1133. doi: 10.1002/chem.200801523. PubMed DOI PMC

Palermo E.F., Kuroda K. Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules. 2009;10:1416–1428. doi: 10.1021/bm900044x. PubMed DOI

Palermo E.F., Lee D.K., Ramamoorthy A., Kuroda K. Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers. J. Phys. Chem. B. 2011;115:366–375. doi: 10.1021/jp1083357. PubMed DOI PMC

Al-Badri Z.M., Som A., Lyon S., Nelson C.F., Nusslein K., Tew G.N. Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers. Biomacromolecules. 2008;9:2805–2810. doi: 10.1021/bm800569x. PubMed DOI

Lin J., Qiu S., Lewis K., Klibanov A.M. Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol. Prog. 2002;18:1082–1086. doi: 10.1021/bp025597w. PubMed DOI

Curtis K.A., Miller D., Millard P., Basu S., Horkay F., Chandran P.L. Unusual salt and pH induced changes in polyethylenimine solutions. PLoS ONE. 2016;11:e0158147. doi: 10.1371/journal.pone.0158147. PubMed DOI PMC

Liu L., Xu K., Wang H., Tan P.K., Fan W., Venkatraman S.S., Li L., Yang Y.Y. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol. 2009;4:457–463. doi: 10.1038/nnano.2009.153. PubMed DOI

Yasir M., Dutta D., Willcox M.D.P. Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa. Sci. Rep. 2019;9:7063. doi: 10.1038/s41598-019-42440-2. PubMed DOI PMC

Kwon J.Y., Kim M.K., Mereuta L., Seo C.H., Luchian T., Park Y. Mechanism of action of antimicrobial peptide P5 truncations against Pseudomonas aeruginosa and Staphylococcus aureus. AMB Express. 2019;9:122. doi: 10.1186/s13568-019-0843-0. PubMed DOI PMC

Bengoechea J.A., Sa Pessoa J. Klebsiella pneumoniae infection biology: Living to counteract host defences. FEMS Microbiol. Rev. 2019;43:123–144. doi: 10.1093/femsre/fuy043. PubMed DOI PMC

Fleeman R.M., Macias L.A., Brodbelt J.S., Davies B.W. Defining principles that influence antimicrobial peptide activity against capsulated Klebsiella pneumoniae. Proc. Natl. Acad. Sci. USA. 2020;117:27620. doi: 10.1073/pnas.2007036117. PubMed DOI PMC

Liu X., Tang M., Zhang T., Hu Y., Zhang S., Kong L., Xue Y. Determination of a threshold dose to reduce or eliminate CdTe-induced toxicity in L929 cells by controlling the exposure dose. PLoS ONE. 2013;8:e59359. doi: 10.1371/journal.pone.0059359. PubMed DOI PMC

Venkatesh M., Barathi V.A., Goh E.T.L., Anggara R., Fazil M., Ng A.J.Y., Harini S., Aung T.T., Fox S.J., Liu S., et al. Antimicrobial activity and cell selectivity of synthetic and biosynthetic cationic polymers. Antimicrob. Agents Chemother. 2017;61 doi: 10.1128/AAC.00469-17. PubMed DOI PMC

Aguiar-Ricardo A., Bonifácio V.D.B., Casimiro T., Correia V.G. Supercritical carbon dioxide design strategies: From drug carriers to soft killers. Philos. Trans. A Math Phys. Eng. Sci. 2015;373 doi: 10.1098/rsta.2015.0009. PubMed DOI

Burckhardt I., Zimmermann S. Susceptibility testing of bacteria using Maldi-Tof Mass Spectrometry. Front. Microbiol. 2018;9:1744. doi: 10.3389/fmicb.2018.01744. PubMed DOI PMC

Edwards-Jones V., Claydon M.A., Evason D.J., Walker J., Fox A.J., Gordon D.B. Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J. Med. Microbiol. 2000;49:295–300. doi: 10.1099/0022-1317-49-3-295. PubMed DOI

Wiegand I., Hilpert K., Hancock R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008;3:163–175. doi: 10.1038/nprot.2007.521. PubMed DOI

Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI

García-Armesto M.R., Prieto M., García-López M.L., Otero A., Moreno B. Modern microbiological methods for foods: Colony count and direct count methods. A review. Microbiologia. 1993;9:1–13. PubMed

Mangoni M.L., Papo N., Barra D., Simmaco M., Bozzi A., Di Giulio A., Rinaldi A.C. Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. Biochem. J. 2004;380:859–865. doi: 10.1042/bj20031975. PubMed DOI PMC

Xu M., McCanna D.J., Sivak J.G. Use of the viability reagent PrestoBlue in comparison with alamarBlue and MTT to assess the viability of human corneal epithelial cells. J. Pharmacol. Toxicol. Methods. 2015;71:1–7. doi: 10.1016/j.vascn.2014.11.003. PubMed DOI

Pinheiro M., Lúcio M., Lima J.L., Reis S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine (Lond.) 2011;6:1413–1428. doi: 10.2217/nnm.11.122. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Lepidopteran insects: emerging model organisms to study infection by enteropathogens

. 2023 Apr ; 68 (2) : 181-196. [epub] 20221122

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...