Modulation of the Immune Response by Deferasirox in Myelodysplastic Syndrome Patients
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-31689A
Czech Health Research Council
00023736
Project for Conceptual Development of Research Organization from the Ministry of Health of the Czech Republic.
PubMed
33430232
PubMed Central
PMC7825690
DOI
10.3390/ph14010041
PII: ph14010041
Knihovny.cz E-zdroje
- Klíčová slova
- deferasirox, iron chelation, molecular mechanisms, myelodysplastic syndrome,
- Publikační typ
- časopisecké články MeSH
Deferasirox (DFX) is an oral iron chelator used to reduce iron overload (IO) caused by frequent blood cell transfusions in anemic myelodysplastic syndrome (MDS) patients. To study the molecular mechanisms by which DFX improves outcome in MDS, we analyzed the global gene expression in untreated MDS patients and those who were given DFX treatment. The gene expression profiles of bone marrow CD34+ cells were assessed by whole-genome microarrays. Initially, differentially expressed genes (DEGs) were determined between patients with normal ferritin levels and those with IO to address the effect of excessive iron on cellular pathways. These DEGs were annotated to Gene Ontology terms associated with cell cycle, apoptosis, adaptive immune response and protein folding and were enriched in cancer-related pathways. The deregulation of multiple cancer pathways in iron-overloaded patients suggests that IO is a cofactor favoring the progression of MDS. The DEGs between patients with IO and those treated with DFX were involved predominantly in biological processes related to the immune response and inflammation. These data indicate DFX modulates the immune response mainly via neutrophil-related genes. Suppression of negative regulators of blood cell differentiation essential for cell maturation and upregulation of heme metabolism observed in DFX-treated patients may contribute to the hematopoietic improvement.
Zobrazit více v PubMed
Hellström-Lindberg E. Management of anemia associated with myelodysplastic syndrome. Semin. Hematol. 2005;42:S10–S13. doi: 10.1053/j.seminhematol.2005.01.002. PubMed DOI
Mitchell M., Gore S.D., Zeidan A.M. Iron chelation therapy in myelodysplastic syndromes: Where do we stand? Expert Rev. Hematol. 2013;6:397–410. doi: 10.1586/17474086.2013.814456. PubMed DOI PMC
Liu H., Yang N., Meng S., Zhang Y., Zhang H., Zhang W. Iron chelation therapy for myelodysplastic syndrome: A systematic review and meta-analysis. Clin. Exp. Med. 2020;20:1–9. doi: 10.1007/s10238-019-00592-5. PubMed DOI
Vreugdenhil G., Smeets M., Feelders R.A., van Eijk H.G. Iron chelators may enhance erythropoiesis by increasing iron delivery to haematopoietic tissue and erythropoietin response in iron-loading anaemia. Acta Haematol. 1993;89:57–60. doi: 10.1159/000204488. PubMed DOI
Kamihara Y., Takada K., Sato T., Kawano Y., Murase K., Arihara Y., Kikuchi S., Hayasaka N., Usami M., Iyama S., et al. The iron chelator deferasirox induces apoptosis by targeting oncogenic Pyk2/β-catenin signaling in human multiple myeloma. Oncotarget. 2016;7:64330–64341. doi: 10.18632/oncotarget.11830. PubMed DOI PMC
Lui G.Y., Kovacevic Z., Richardson V., Merlot A.M., Kalinowski D.S., Richardson D.R. Targeting cancer by binding iron: Dissecting cellular signalling pathways. Oncotarget. 2015;6:18748–18779. doi: 10.18632/oncotarget.4349. PubMed DOI PMC
Banerjee A., Mifsud N.A., Bird R., Forsyth C., Szer J., Tam C., Kellner S., Grigg A., Motum P., Bentley M., et al. The oral iron chelator deferasirox inhibits NF-κB mediated gene expression without impacting on proximal activation: Implications for myelodysplasia and aplastic anaemia. Br. J. Haematol. 2015;168:576–582. doi: 10.1111/bjh.13151. PubMed DOI
Sánchez J., Lumbreras E., Díez-Campelo M., González T., López D.A., Abáigar M., Del Rey M., Martín A.Á., de Paz R., Erquiaga S., et al. Genome-wide transcriptomics leads to the identification of deregulated genes after deferasirox therapy in low-risk MDS patients. Pharm. J. 2020;20:664–671. doi: 10.1038/s41397-020-0154-5. PubMed DOI
Ohyashiki J.H., Kobayashi C., Hamamura R., Okabe S., Tauchi T., Ohyashiki K. The oral iron chelator deferasirox represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1. Cancer Sci. 2009;10:970–977. doi: 10.1111/j.1349-7006.2009.01131.x. PubMed DOI PMC
Leitch H.A., Gattermann N. Hematologic improvement with iron chelation therapy in myelodysplastic syndromes: Clinical data, potential mechanisms, and outstanding questions. Crit. Rev. Oncol. Hematol. 2019;141:54–72. doi: 10.1016/j.critrevonc.2019.06.002. PubMed DOI
Messa E., Carturan S., Maffè C., Pautasso M., Bracco E., Roetto A., Messa F., Arruga F., Defilippi I., Rosso V., et al. Deferasirox is a powerful NF-kappaB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging. Haematologica. 2010;95:1308–1316. doi: 10.3324/haematol.2009.016824. PubMed DOI PMC
Pfeifhofer-Obermair C., Tymoszuk P., Petzer V., Weiss G., Nairz M. Iron in the Tumor Microenvironment-Connecting the Dots. Front. Oncol. 2018;8:549. doi: 10.3389/fonc.2018.00549. PubMed DOI PMC
Shen J., Sheng X., Chang Z., Wu Q., Wang S., Xuan Z., Li D., Wu Y., Shang Y., Kong X., et al. Iron metabolism regulates p53 signaling through direct heme-p53 interaction and modulation of p53 localization, stability, and function. Cell Rep. 2014;7:180–193. doi: 10.1016/j.celrep.2014.02.042. PubMed DOI PMC
Liang S.X., Richardson D.R. The effect of potent iron chelators on the regulation of p53: Examination of the expression, localization and DNA-binding activity of p53 and the transactivation of WAF1. Carcinogenesis. 2003;24:1601–1614. doi: 10.1093/carcin/bgg116. PubMed DOI
Wu Y., Lin J.C., Piluso L.G., Dhahbi J.M., Bobadilla S., Spindler S., Liu X. Phosphorylation of p53 by TAF1 inactivates p53-dependent transcription in the DNA damage response. Mol. Cell. 2014;53:63–74. doi: 10.1016/j.molcel.2013.10.031. PubMed DOI PMC
Pellagatti A., Marafioti T., Paterson J.C., Malcovati L., Della Porta M.G., Jädersten M., Pushkaran B., George T.I., Arber D.A., Killick S., et al. Marked downregulation of the granulopoiesis regulator LEF1 is associated with disease progression in the myelodysplastic syndromes. Br. J. Haematol. 2009;146:86–90. doi: 10.1111/j.1365-2141.2009.07720.x. PubMed DOI
Toma A., Fenaux P., Dreyfus F., Cordonnier C. Infections in myelodysplastic syndromes. Haematologica. 2012;97:1459–1470. doi: 10.3324/haematol.2012.063420. PubMed DOI PMC
Wong C.A.C., Wong S.A.Y., Leitch H.A. Iron overload in lower international prognostic scoring system risk patients with myelodysplastic syndrome receiving red blood cell transfusions: Relation to infections and possible benefit of iron chelation therapy. Leuk. Res. 2018;67:75–81. doi: 10.1016/j.leukres.2018.02.005. PubMed DOI
Walter P., Ron D. The unfolded protein response: From stress pathway to homeostatic regulation. Science. 2011;334:1081–1086. doi: 10.1126/science.1209038. PubMed DOI
Brissot E., Bernard D.G., Loréal O., Brissot P., Troadec M.B. Too much iron: A masked foe for leukemias. Blood Rev. 2020;39:100617. doi: 10.1016/j.blre.2019.100617. PubMed DOI
Befus A.D., Mowat C., Gilchrist M., Hu J., Solomon S., Bateman A. Neutrophil defensins induce histamine secretion from mast cells: Mechanisms of action. J. Immunol. 1999;163:947–953. PubMed
Territo M.C., Ganz T., Selsted M.E., Lehrer R.I. Monocyte-chemotactic activity of defensins from human neutrophils. J. Clin. Investig. 1989;84:2017–2020. doi: 10.1172/JCI114394. PubMed DOI PMC
Yang D., Chen Q., Chertov O., Oppenheim J.J. Human neutrophil defensins selectively chemoattract naïve T and immature dendritic cells. J. Leukoc. Biol. 2000;68:9–14. PubMed
Chertov O., Michiel D.F., Xu L., Wang J.M., Tani K., Murphy W.J., Longo D.L., Taub D.D., Oppenheim J.J. Identification of defensin-1, defensin-2 and CAP37/azurocidin as T cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 1996;271:2935–2940. doi: 10.1074/jbc.271.6.2935. PubMed DOI
Miles K., Clarke D.J., Lu W., Sibinska Z., Beaumont P.E., Davidson D.J., Barr T.A., Campopiano D.J., Gray M. Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J. Immunol. 2009;183:2122–2132. doi: 10.4049/jimmunol.0804187. PubMed DOI PMC
Brook M., Tomlinson G.H., Miles K., Smith R.W., Rossi A.G., Hiemstra P.S., van′t Wout E.F., Dean J.L., Gray N.K., Lu W., et al. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation. Proc. Natl. Acad. Sci. USA. 2016;113:4350–4355. doi: 10.1073/pnas.1601831113. PubMed DOI PMC
Wu W.K., Wong C.C., Li Z.J., Zhang L., Ren S.X., Cho C.H. Cathelicidins in inflammation and tissue repair: Potential therapeutic applications for gastrointestinal disorders. Acta Pharmacol. Sin. 2010;31:1118–1122. doi: 10.1038/aps.2010.117. PubMed DOI PMC
Parlato M., Souza-Fonseca-Guimaraes F., Philippart F., Misset B., Captain Study Group. Adib-Conquy M., Cavaillon J.M. CD24-triggered caspase-dependent apoptosis via mitochondrial membrane depolarization and reactive oxygen species production of human neutrophils is impaired in sepsis. J. Immunol. 2014;192:2449–2459. doi: 10.4049/jimmunol.1301055. PubMed DOI
Kolaczkowska E., Kubes P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013;13:159–175. doi: 10.1038/nri3399. PubMed DOI
Nakashige T.G., Zhang B., Krebs C., Nolan E.M. Human calprotectin is an iron-sequestering host-defense protein. Nat. Chem. Biol. 2015;11:765–771. doi: 10.1038/nchembio.1891. PubMed DOI PMC
Imamura T., Morimoto A., Takanashi M., Hibi S., Sugimoto T., Ishii E., Imashuku S. Frequent co-expression of HoxA9 and Meis1 genes in infant acute lymphoblastic leukaemia with MLL rearrangement. Br. J. Haemat. 2002;119:119–121. doi: 10.1046/j.1365-2141.2002.03803.x. PubMed DOI
Nemeth M.J., Curtis D.J., Kirby M.R., Garrett-Beal L.J., Seidel N.E., Cline A.P., Bodine D.M. Hmgb3: An HMG-box family member expressed in primitive hematopoietic cells that inhibits myeloid and B-cell differentiation. Blood. 2003;102:1298–1306. doi: 10.1182/blood-2002-11-3541. PubMed DOI
Chen Z., Brand N.J., Chen A., Chen S.J., Tong J.H., Wang Z.Y., Waxman S., Zelent A. Fusion between a novel Krüppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 1993;12:1161–1167. doi: 10.1002/j.1460-2075.1993.tb05757.x. PubMed DOI PMC
McConnell M.J., Chevallier N., Berkofsky-Fessler W., Giltnane J.M., Malani R.B., Staudt L.M., Licht J.D. Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression. Mol. Cell Biol. 2003;23:9375–9388. doi: 10.1128/MCB.23.24.9375-9388.2003. PubMed DOI PMC
Belickova M., Vesela J., Jonasova A., Pejsova B., Votavova H., Merkerova M.D., Zemanova Z., Brezinova J., Mikulenkova D., Lauermannova M., et al. TP53 mutation variant allele frequency is a potential predictor for clinical outcome of patients with lower-risk myelodysplastic syndromes. Oncotarget. 2016;7:36266–36279. doi: 10.18632/oncotarget.9200. PubMed DOI PMC