On transformative adaptive activation functions in neural networks for gene expression inference

. 2021 ; 16 (1) : e0243915. [epub] 20210114

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33444316

Gene expression profiling was made more cost-effective by the NIH LINCS program that profiles only ∼1, 000 selected landmark genes and uses them to reconstruct the whole profile. The D-GEX method employs neural networks to infer the entire profile. However, the original D-GEX can be significantly improved. We propose a novel transformative adaptive activation function that improves the gene expression inference even further and which generalizes several existing adaptive activation functions. Our improved neural network achieves an average mean absolute error of 0.1340, which is a significant improvement over our reimplementation of the original D-GEX, which achieves an average mean absolute error of 0.1637. The proposed transformative adaptive function enables a significantly more accurate reconstruction of the full gene expression profiles with only a small increase in the complexity of the model and its training procedure compared to other methods.

Zobrazit více v PubMed

Lee WC, et al. Multiregion gene expression profiling reveals heterogeneity in molecular subtypes and immunotherapy response signatures in lung cancer. Modern Pathology. 2018;31(6):947–955. 10.1038/s41379-018-0029-3 PubMed DOI

Edsgärd D, et al. Identification of spatial expression trends in single-cell gene expression data. Nature Methods. 2018;15(5):339–342. 10.1038/nmeth.4634 PubMed DOI PMC

Wang Y, et al. The role of SMAD3 in the genetic predisposition to papillary thyroid carcinoma. Genetics in Medicine. 2018;20(9):927–935. 10.1038/gim.2017.224 PubMed DOI PMC

Nielsen JB, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nature Genetics. 2018;50(9):1234–1239. 10.1038/s41588-018-0171-3 PubMed DOI PMC

Subramanian A, et al. A Next Generation Connectivity Map: L1000 Platform and the First 1, 000, 000 Profiles. Cell. 2017;171(6):1437–1452.e17. 10.1016/j.cell.2017.10.049 PubMed DOI PMC

Chen Y, et al. Gene expression inference with deep learning. Bioinformatics. 2016;32(12):1832–1839. 10.1093/bioinformatics/btw074 PubMed DOI PMC

Lancashire LJ, et al. An introduction to artificial neural networks in bioinformatics–application to complex microarray and mass spectrometry datasets in cancer studies. Briefings in Bioinformatics. 2008;10(3):315–329. 10.1093/bib/bbp012 PubMed DOI

Min S, et al. Deep learning in bioinformatics. Briefings in Bioinformatics. 2016; p. bbw068. 10.1093/bib/bbw068 PubMed DOI

Angermueller C, et al. Deep learning for computational biology. Molecular Systems Biology. 2016;12(7):878 10.15252/msb.20156651 PubMed DOI PMC

Eetemadi A, Tagkopoulos I. Genetic Neural Networks: an artificial neural network architecture for capturing gene expression relationships. Bioinformatics. 2018;. PubMed

Dizaji KG, Wang X, Huang H. Semi-Supervised Generative Adversarial Network for Gene Expression Inference. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining—KDD’18. New York: ACM Press; 2018. Available from: 10.1145/3219819.3220114. DOI

Wang X, Dizaji KG, Huang H. Conditional generative adversarial network for gene expression inference. Bioinformatics. 2018;34(17):i603–i611. 10.1093/bioinformatics/bty563 PubMed DOI PMC

Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Teh YW, Titterington M, editors. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. vol. 9 of Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR; 2010. p. 249–256. Available from: http://proceedings.mlr.press/v9/glorot10a.html.

Consortium G. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 2015;348(6235):648–660. 10.1126/science.1262110 PubMed DOI PMC

Lappalainen T, et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501(7468):506–511. 10.1038/nature12531 PubMed DOI PMC

Wang H, Li C, Zhang J, Wang J, Ma Y, Lian Y. A new LSTM-based gene expression prediction model: L-GEPM. Journal of Bioinformatics and Computational Biology. 2019;17(04):1950022 10.1142/S0219720019500227 PubMed DOI

Li W, Yin Y, Quan X, Zhang H. Gene Expression Value Prediction Based on XGBoost Algorithm. Frontiers in Genetics. 2019;10 10.3389/fgene.2019.01077 PubMed DOI PMC

Goodfellow I, et al. Deep Learning. Cambridge: MIT Press; 2016.

Flennerhag S, et al. Breaking the Activation Function Bottleneck through Adaptive Parameterization. CoRR. 2018;abs/1805.08574.

Vecci L, et al. Learning and Approximation Capabilities of Adaptive Spline Activation Function Neural Networks. Neural Networks. 1998;11(2):259–270. 10.1016/S0893-6080(97)00118-4 PubMed DOI

He K, et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: 2015 IEEE International Conference on Computer Vision (ICCV). New Jersey: IEEE; 2015. Available from: 10.1109/iccv.2015.123. DOI

Dushkoff M, Ptucha R. Adaptive Activation Functions for Deep Networks. Electronic Imaging. 2016;2016(19):1–5. 10.2352/ISSN.2470-1173.2016.19.COIMG-149 DOI

Hou L, et al. ConvNets with Smooth Adaptive Activation Functions for Regression. In: Singh A, Zhu J, editors. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. vol. 54 of Proceedings of Machine Learning Research. Fort Lauderdale, FL, USA: PMLR; 2017. p. 430–439. Available from: http://proceedings.mlr.press/v54/hou17a.html. PubMed PMC

Scardapane S, et al. Learning Activation Functions from Data Using Cubic Spline Interpolation In: Neural Advances in Processing Nonlinear Dynamic Signals. New York: Springer International Publishing; 2018. p. 73–83. Available from: 10.1007/978-3-319-95098-3_7. DOI

Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the International Conference on Machine Learning (ICML); 2013.

Clevert D, et al. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). CoRR. 2015;abs/1511.07289.

Qian S, et al. Adaptive activation functions in convolutional neural networks. Neurocomputing. 2018;272:204–212. 10.1016/j.neucom.2017.06.070 DOI

Yamada T, Yabuta T. Neural network controller using autotuning method for nonlinear functions. IEEE Transactions on Neural Networks. 1992;3(4):595–601. 10.1109/72.143373 PubMed DOI

Chen CT, Chang WD. A feedforward neural network with function shape autotuning. Neural Networks. 1996;9(4):627–641. 10.1016/0893-6080(96)00006-8 DOI

Trentin E. Networks with trainable amplitude of activation functions. Neural Networks. 2001;14(4-5):471–493. 10.1016/S0893-6080(01)00028-4 PubMed DOI

Goh SL, Mandic DP. Recurrent neural networks with trainable amplitude of activation functions. Neural Networks. 2003;16(8):1095–1100. 10.1016/S0893-6080(03)00139-4 PubMed DOI

Xu S, Zhang M. Justification of a neuron-adaptive activation function. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. Los Alamitos: IEEE; 2000. Available from: 10.1109/ijcnn.2000.861351. DOI

Piazza F, et al. Artificial Neural Networks With Adaptive Polynomial Activation Function. In: Proceedings of the International Joint Conference on Neural Networks. IJCNN.; 1992.

Bai Y, et al. The performance of the backpropagation algorithm with varying slope of the activation function. Chaos, Solitons & Fractals. 2009;40(1):69–77. 10.1016/j.chaos.2007.07.033 DOI

Yu CC, et al. An adaptive activation function for multilayer feedforward neural networks. In: 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. TENCOM '02. Proceedings. New Jersey: IEEE; 2002. Available from: 10.1109/tencon.2002.1181357. DOI

Jagtap AD, Kawaguchi K, Karniadakis GE. Locally adaptive activation functions with slope recovery term for deep and physics-informed neural networks. CoRR. 2019;abs/1909.12228. PubMed PMC

Agostinelli F, et al. Learning Activation Functions to Improve Deep Neural Networks. CoRR. 2014;abs/1412.6830.

Guarnieri S, et al. Multilayer feedforward networks with adaptive spline activation function. IEEE Transactions on Neural Networks. 1999;10(3):672–683. 10.1109/72.761726 PubMed DOI

Solazzi M, Uncini A. Artificial neural networks with adaptive multidimensional spline activation functions. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. Los Alamitos: IEEE; 2000. Available from: 10.1109/ijcnn.2000.861352. DOI

Campolucci P, et al. Neural networks with adaptive spline activation function. In: Proceedings of 8th Mediterranean Electrotechnical Conference on Industrial Applications in Power Systems, Computer Science and Telecommunications (MELECON 96). New Jersey: IEEE; 1996. Available from: 10.1109/melcon.1996.551220. DOI

Lin M, et al. Network In Network. CoRR. 2013;abs/1312.4400.

Ismail A, et al. Predictions of bridge scour: Application of a feed-forward neural network with an adaptive activation function. Engineering Applications of Artificial Intelligence. 2013;26(5-6):1540–1549. 10.1016/j.engappai.2012.12.011 DOI

Castelli I, Trentin E. Semi-unsupervised Weighted Maximum-Likelihood Estimation of Joint Densities for the Co-training of Adaptive Activation Functions In: Lecture Notes in Computer Science. Berlin: Springer Berlin Heidelberg; 2012. p. 62–71. Available from: 10.1007/978-3-642-28258-4_7. DOI

Castelli I, Trentin E. Supervised and Unsupervised Co-training of Adaptive Activation Functions in Neural Nets In: Lecture Notes in Computer Science. Berlin: Springer Berlin Heidelberg; 2012. p. 52–61. Available from: 10.1007/978-3-642-28258-4_6. DOI

Castelli I, Trentin E. Combination of supervised and unsupervised learning for training the activation functions of neural networks. Pattern Recognition Letters. 2014;37:178–191. 10.1016/j.patrec.2013.06.013 DOI

Srivastava N, et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J Mach Learn Res. 2014;15(1):1929–1958.

Dozat T. Incorporating Nesterov Momentum into Adam; 2015. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.897.

Bostrom H, et al. On evidential combination rules for ensemble classifiers. In: Information Fusion, 2008 11th International Conference on; 2008. p. 1–8.

Freund Y, Schapire RE. Experiments with a New Boosting Algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann; 1996. p. 148–156. Available from: http://cseweb.ucsd.edu/~yfreund/papers/boostingexperiments.pdf.

Rokach L. Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography. Computational Statistics & Data Analysis. 2009;53(12):4046–4072. 10.1016/j.csda.2009.07.017 DOI

Rokach L. Ensemble-based Classifiers. Artif Intell Rev. 2010;33(1-2):1–39. 10.1007/s10462-009-9124-7 DOI

Vinyals O, et al. Show and Tell: Lessons Learned from the 2015 MSCOCO Image Captioning Challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017;39(4):652–663. 10.1109/TPAMI.2016.2587640 PubMed DOI

Nigam I, et al. Ensemble Knowledge Transfer for Semantic Segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). New Jersey: IEEE; 2018. Available from: 10.1109/wacv.2018.00168. DOI

Yang P, et al. A Review of Ensemble Methods in Bioinformatics. CBIO. 2010;5(4):296–308. 10.2174/157489310794072508 DOI

Valentini G, et al. Bagged ensembles of Support Vector Machines for gene expression data analysis. In: Proceedings of the International Joint Conference on Neural Networks, 2003. New Jersey: IEEE; 2003. Available from: 10.1109/IJCNN.2003.1223688. DOI

Kuncheva LI. Combining Pattern Classifiers. New Jersey: John Wiley & Sons, Inc.; 2004. Available from: 10.1002/0471660264. DOI

Tiwari AK, Srivastava R. A Survey of Computational Intelligence Techniques in Protein Function Prediction. International Journal of Proteomics. 2014;2014:1–22. 10.1155/2014/845479 PubMed DOI PMC

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43(7):e47–e47. 10.1093/nar/gkv007 PubMed DOI PMC

Chollet F, et al. Keras; 2015.

Abadi M, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems; 2015. Available from: http://tensorflow.org/.

Jones E, et al. SciPy: Open source scientific tools for Python; 2001–. Available from: http://www.scipy.org/.

Pedregosa F, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830.

McKinney W. Data Structures for Statistical Computing in Python. In: van der Walt S, Millman J, editors. Proceedings of the 9th Python in Science Conference; 2010. p. 51—56.

van der Walt S, et al. The NumPy Array: A Structure for Efficient Numerical Computation. Computing in Science & Engineering. 2011;13(2):22–30. 10.1109/MCSE.2011.37 DOI

Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering. 2007;9(3):90–95. 10.1109/MCSE.2007.55 DOI

Waskom M, et al. seaborn: v0.7.1 (June 2016); 2016. Available from: 10.5281/zenodo.54844. DOI

Medler DA, Dawson MRW. Training redundant artificial neural networks: Imposing biology on technology. Psychological Research. 1994;57(1):54–62. 10.1007/BF00452996 PubMed DOI

Medler DA, Dawson MRW. Using Redundancy to Improve The Performance of Artificial Neural Networks. In: Biennial Conference of the Canadian Society for Computational Studies of Intelligence on Advances in Artificial Intelligence. New Jersey: IEEE; 1994.

Johnson M, Chartier S. Is There a Purpose to Network Redundancy? In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE; 2018. Available from: 10.1109/ijcnn.2018.8489203. DOI

Nguyen AT, Xu J, Luu DK, Zhao Q, Yang Z. Advancing System Performance with Redundancy: From Biological to Artificial Designs. Neural Computation. 2019;31(3):555–573. 10.1162/neco_a_01166 PubMed DOI

He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2016. Available from: 10.1109/cvpr.2016.90. DOI

Safran I, Shamir O. On the Quality of the Initial Basin in Overspecified Neural Networks vol. 48 of Proceedings of Machine Learning Research. New York, New York, USA: PMLR; 2016. p. 774–782. Available from: http://proceedings.mlr.press/v48/safran16.html.

Nguyen Q, Hein M. The Loss Surface of Deep and Wide Neural Networks. In: Proceedings of the 34th International Conference on Machine Learning—Volume 70. ICML’17. JMLR.org; 2017. p. 2603–2612.

Freeman DC, Bruna J. Topology and Geometry of Half-Rectified Network Optimization. 5th International Conference on Learning Representations. ICLR; 2017.

Stojanova D, Panov P, Gjorgjioski V, Kobler A, Džeroski S. Estimating vegetation height and canopy cover from remotely sensed data with machine learning. Ecological Informatics. 2010;5(4):256–266. 10.1016/j.ecoinf.2010.03.004 DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

On tower and checkerboard neural network architectures for gene expression inference

. 2020 Dec 16 ; 21 (Suppl 5) : 454. [epub] 20201216

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...