Dosimetric impact of amino acid positron emission tomography imaging for target delineation in radiation treatment planning for high-grade gliomas
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P50 CA108961
NCI NIH HHS - United States
R01 CA178200
NCI NIH HHS - United States
PubMed
33458396
PubMed Central
PMC7807641
DOI
10.1016/j.phro.2018.06.004
PII: S2405-6316(16)30014-8
Knihovny.cz E-zdroje
- Klíčová slova
- 18F-DOPA PET, Amino acid PET, PET-guided radiation therapy, Planning study,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND PURPOSE: The amino-acid positron emission tomography (PET) tracer 3,4-dihydroxy-6-[18F] fluoro-l-phenylalanine (18F-DOPA) has increased sensitivity for detecting regions of biologically aggressive tumors compared to T1 contrast-enhanced (T1-CE) magnetic resonance imaging (MRI). We performed dosimetric evaluation of treatment plans prepared with and without inclusion of 18F-DOPA-based biological target volume (BTV) evaluating its role in guiding radiotherapy of grade III/IV gliomas. MATERIALS AND METHODS: Eight patients (five T1-CE, three non-contrast-enhancing [NCE]) were included in our study. MRI only-guided anatomic plans and MRI+18FDOPA-PET-guided biologic plans were prepared for each patient, and dosimetric data for target volumes and organs at risk (OAR) were compared. High-dose BTV60Gy was defined as regions with tumor to normal brain (T/N) >2.0, while low-dose BTV51Gy was initially based on T/N >1.3, but refined per Nuclear Medicine expert. RESULTS: For T1-CE tumors, planning target volumes (PTV) were larger than MRI-only anatomic target volumes. Despite increases in size of both gross target volumes and PTV, with volumetric-modulated arc therapy planning, no increase of dose to OAR was observed while maintaining similar target dose coverage. For NCE tumors, MRI+18F-DOPA PET biologic imaging identified a sub-region of the large, T2-FLAIR abnormal signal which may allow a smaller volume to receive the high dose (60 Gy) radiation. CONCLUSIONS: For T1-CE tumors, PTVs were larger than MRI-only anatomic target volumes with no increase of dose to OARs. Therefore, MRI+18F-DOPA PET-based biologic treatment planning appears feasible in patients with high-grade gliomas.
Department of Nuclear Medicine Mayo Clinic Rochester MN United States
Department of Radiation Oncology Mayo Clinic Rochester MN United States
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Villani V., Carapella C.M., Chiaravalloti A., Terrenato I., Piludu F., Vidiri A. The role of PET [18F]FDOPA in evaluating low-grade glioma. Anticancer Res. 2015;35:5117–5122. PubMed
Bell C., Dowson N., Puttick S., Gal Y., Thomas P., Fay M. Increasing feasibility and utility of (18)F-FDOPA PET for the management of glioma. Nucl Med Biol. 2015;42:788–795. PubMed
Lee I.H., Piert M., Gomez-Hassan D., Junck L., Rogers L., Hayman J. Association of 11C-methionine PET uptake with site of failure after concurrent temozolomide and radiation for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2009;73:479–485. PubMed PMC
Pafundi D.H., Laack N.N., Youland R.S., Parney I.F., Lowe V.J., Giannini C. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro Oncol. 2013;15:1058–1067. PubMed PMC
Ledezma C.J., Chen W., Sai V., Freitas B., Cloughesy T., Czernin J. 18F-FDOPA PET/MRI fusion in patients with primary/recurrent gliomas: initial experience. Eur J Radiol. 2009;71:242–248. PubMed
Chiti A., Kirienko M., Gregoire V. Clinical use of PET-CT data for radiotherapy planning: what are we looking for? Radiother Oncol. 2010;96:277–279. PubMed
Grosu A.L., Weber W.A. PET for radiation treatment planning of brain tumours. Radiother Oncol. 2010;96:325–327. PubMed
Marvaso G., Barone A., Amodio N., Cascini G.L., Scotti V., Bianco C. The current status of novel PET radio-pharmaceuticals in radiotherapy treatment planning of glioma. Curr Pharm Biotechnol. 2014;14:1099–1104. PubMed
Laack N.N., Brown P.D. Cognitive sequelae of brain radiation in adults. Semin Oncol. 2004;31:702–713. PubMed
Brown P.D., Krishnan S., Sarkaria J.N., Wu W., Jaeckle K.A., Uhm J.H. Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J Clin Oncol. 2008;26:5603–5609. PubMed PMC
Knoos T., Kristensen I., Nilsson P. Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index. Int J Radiat Oncol Biol Phys. 1998;42:1169–1176. PubMed
Shaw E., Kline R., Gillin M., Souhami L., Hirschfeld A., Dinapoli R. Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys. 1993;27:1231–1239. PubMed
Terezakis S.A., Schoder H., Kowalski A., McCann P., Lim R., Turlakov A. A prospective study of (1)(8)FDG-PET with CT coregistration for radiation treatment planning of lymphomas and other hematologic malignancies. Int J Radiat Oncol Biol Phys. 2014;89:376–383. PubMed PMC
Rieken S., Habermehl D., Giesel F.L., Hoffmann C., Burger U., Rief H. Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy. Radiother Oncol. 2013;109:487–492. PubMed
Holm A.I.S., Petersen J.B.B., Muren L.P., Seiersen K., Borghammer P., Lukacova S. Functional image-guided dose escalation in gliomas using of state-of-the-art photon vs. proton therapy. Acta Oncol. 2017;56:826–831. PubMed
Chang E.L., Akyurek S., Avalos T., Rebueno N., Spicer C., Garcia J. Evaluation of peritumoral edema in the delineation of radiotherapy clinical target volumes for glioblastoma. Int J Radiat Oncol Biol Phys. 2007;68:144–150. PubMed
Whitfield G.A., Kennedy S.R., Djoukhadar I.K., Jackson A. Imaging and target volume delineation in glioma. Clin Oncol (R Coll Radiol) 2014;26:364–376. PubMed
Dobelbower M.C., Burnett Iii O.L., Nordal R.A., Nabors L.B., Markert J.M., Hyatt M.D. Patterns of failure for glioblastoma multiforme following concurrent radiation and temozolomide. J Med Imaging Radiat Oncol. 2011;55:77–81. PubMed