Assessment of Stem Volume on Plots Using Terrestrial Laser Scanner: A Precision Forestry Application
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000803
EVA4.0
PubMed
33466269
PubMed Central
PMC7794800
DOI
10.3390/s21010301
PII: s21010301
Knihovny.cz E-resources
- Keywords
- 3D point cloud, circle fitting, forest biometrics, hierarchical cluster analysis, managed forest, modeling stem volume, stem-level assessment,
- Publication type
- Journal Article MeSH
Timber volume is an important asset, not only as an ecological component, but also as a key source of present and future revenues, which requires precise estimates. We used the Trimble TX8 survey-grade terrestrial laser scanner (TLS) to create a detailed 3D point cloud for extracting total tree height and diameter at breast height (1.3 m; DBH). We compared two different methods to accurately estimate total tree heights: the first method was based on a modified version of the local maxima algorithm for treetop detection, "HTTD", and for the second method we used the centers of stem cross-sections at stump height (30 cm), "HTSP". DBH was estimated by a computationally robust algebraic circle-fitting algorithm through hierarchical cluster analysis (HCA). This study aimed to assess the accuracy of these descriptors for evaluating total stem volume by comparing the results with the reference tree measurements. The difference between the estimated total stem volume from HTTD and measured stems was 2.732 m3 for European oak and 2.971 m3 for Norway spruce; differences between the estimated volume from HTSP and measured stems was 1.228 m3 and 2.006 m3 for European oak and Norway spruce, respectively. The coefficient of determination indicated a strong relationship between the measured and estimated total stem volumes from both height estimation methods with an R2 = 0.89 for HTTD and R2 = 0.87 for HTSP for European oak, and R2 = 0.98 for both HTTD and HTSP for Norway spruce. Our study has demonstrated the feasibility of finer-resolution remote sensing data for semi-automatic stem volumetric modeling of small-scale studies with high accuracy as a potential advancement in precision forestry.
See more in PubMed
Kearsley E., Moonen P.C., Hufkens K., Doetterl S., Lisingo J., Bosela F.B., Boeckx P., Beeckman H., Verbeeck H. Model performance of tree height-diameter relationships in the central Congo Basin. Ann. For. Sci. 2017;74:7. doi: 10.1007/s13595-016-0611-0. DOI
Repola J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 2009;43:625–647. doi: 10.14214/sf.184. DOI
Calders K., Newnham G., Burt A., Murphy S., Raumonen P., Herold M., Culvenor D.S., Avitabile V., Disney M.I., Armston J., et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 2014;6:198–208. doi: 10.1111/2041-210X.12301. DOI
Liu J., Liang X., Hyyppä J., Yu X., Lehtomäki M., Pyorala J., Zhu L., Wang Y., Chen R. Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references. Int. J. Appl. Earth Obs. Geoinf. 2017;56:13–23. doi: 10.1016/j.jag.2016.11.003. DOI
Colgan M.S., Swemmer T., Asner G.P. Structural relationships between form factor, wood density, and biomass in African savanna woodlands. Trees. 2013;28:91–102. doi: 10.1007/s00468-013-0932-7. DOI
Adekunle V.A.J., Nair K.N., Srivastava A.K., Singh N.K. Models and form factors for stand volume estimation in natural forest ecosystems: A case study of Katarniaghat Wildlife Sanctuary (KGWS), Bahraich District, India. J. For. Res. 2013;24:217–226. doi: 10.1007/s11676-013-0347-8. DOI
Socha J., Kulej M. Variation of the tree form factor and taper in European larch of Polish provenances tested under conditions of the Beskid Sądecki mountain range (southern Poland) J. For. Sci. 2008;53:538–547. doi: 10.17221/2168-JFS. DOI
Socha J., Kulej M. Provenance-dependent variability of Abies grandis stem form under mountain conditions of Beskid Sadecki (southern Poland) Can. J. For. Res. 2005;35:1–14. doi: 10.1139/x05-167. DOI
Ikonen V.-P., Kellomäki S., Väisänen H., Peltola H. Modelling the distribution of diameter growth along the stem in Scots pine. Trees. 2006;20:391–402. doi: 10.1007/s00468-006-0053-7. DOI
Pretzsch H., Bielak K., Block J., Bruchwald A., Dieler J., Ehrhart H.P., Kohnle U., Nagel J., Spellmann H., Zasada M., et al. Productivity of mixed versus pure stands of oak (Quercus pretraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur. J. For. Res. 2013;132:263–280. doi: 10.1007/s10342-012-0673-y. DOI
Vidal C., Alberdi I., Redmond J., Vestman M., Lanz A., Schadauer K. The role of European National Forest Inventories for international forestry reporting. Ann. For. Sci. 2016;73:793–806. doi: 10.1007/s13595-016-0545-6. DOI
Brolly G., Kiraly G. Algorithms for stem mapping by means of terrestrial laser scanning. Acta Silv. Lignaria Hung. 2009;5:119–130.
Kunz M., Hess C., Raumonen P., Bienert A., Hackenberg J., Maas H.-G., Härdtle W., Fichtner A., Von Oheimb G. Comparison of wood volume estimates of young trees from terrestrial laser scan data. iForest Biogeosci. For. 2017;10:451–458. doi: 10.3832/ifor2151-010. DOI
Pál I. Measurements of Forest Inventory Parameters on Terrestrial Laser Scanning Data Using Digital Geometry and Topology. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008;37:373–380.
Fan G., Nan L., Chen F., Dong Y., Wang Z., Li H., Chen D. A New Quantitative Approach to Tree Attributes Estimation Based on LiDAR Point Clouds. Remote Sens. 2020;12:1779. doi: 10.3390/rs12111779. DOI
Wezyk P., Koziol K., Glista M., Pierzchalski M. Terrestrial laser scanning versus traditional forest inventory first results from the polish forests. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2007;3:424–429.
Trochta J., Krůček M., Vrška T., Král K. 3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR. PLoS ONE. 2017;12:e0176871. doi: 10.1371/journal.pone.0176871. PubMed DOI PMC
Heinzel J., Huber M.O. Detecting Tree Stems from Volumetric TLS Data in Forest Environments with Rich Understory. Remote Sens. 2016;9:9. doi: 10.3390/rs9010009. DOI
Kasa I. A circle fitting procedure and its error analysis. IEEE Trans. Instrum. Meas. 1976:8–14. doi: 10.1109/TIM.1976.6312298. DOI
Pratt V. Direct least-squares fitting of algebraic surfaces. Comput. Graph. 1987;21:145–152. doi: 10.1145/37402.37420. DOI
Taubin G. Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 1991;13:1115–1138. doi: 10.1109/34.103273. DOI
Pueschel P., Newnham G., Rock G., Udelhoven T., Werner W., Hill J. The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans. ISPRS J. Photogramm. Remote Sens. 2013;77:44–56. doi: 10.1016/j.isprsjprs.2012.12.001. DOI
Koreň M., Mokroš M., Bucha T. Accuracy of tree diameter estimation from terrestrial laser scanning by circle-fitting methods. Int. J. Appl. Earth Obs. Geoinf. 2017;63:122–128. doi: 10.1016/j.jag.2017.07.015. DOI
Dassot M., Colin A., Santenoise P., Fournier M., Constant T. Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Comput. Electron. Agric. 2012;89:86–93. doi: 10.1016/j.compag.2012.08.005. DOI
Wilkes P., Lau A., Disney M., Calders K., Burt A., De Tanago J.G., Bartholomeus H., Brede B., Herold M. Data acquisition considerations for Terrestrial Laser Scanning of forest plots. Remote Sens. Environ. 2017;196:140–153. doi: 10.1016/j.rse.2017.04.030. DOI
Zhang Z., Murtagh F., Van Van Poucke S., Lin S., Lan P. Hierarchical cluster analysis in clinical research with heterogeneous study population: Highlighting its visualization with R. Ann. Transl. Med. 2017;5:75. doi: 10.21037/atm.2017.02.05. PubMed DOI PMC
Maas H.-G., Bienert A., Scheller S., Keane E. Automatic forest inventory parameter determination from terrestrial laser scanner data. Int. J. Remote Sens. 2008;29:1579–1593. doi: 10.1080/01431160701736406. DOI
Roberts K.C., Lindsay J., Berg A.A. An Analysis of Ground-Point Classifiers for Terrestrial LiDAR. Remote Sens. 2019;11:1915. doi: 10.3390/rs11161915. DOI
Corte A.P.D., Rex F.E., De Almeida D.R.A., Sanquetta C.R., Silva C.A., Moura M.M., Wilkinson B., Zambrano A.M.A., Neto E.M.D.C., Veras H.F.P., et al. Measuring Individual Tree Diameter and Height Using GatorEye High-Density UAV-Lidar in an Integrated Crop-Livestock-Forest System. Remote Sens. 2020;12:863. doi: 10.3390/rs12050863. DOI
Nie S., Wang C., Xi X., Luo S., Zhu X., Li G., Liu X., Tian J., Shang S. Assessing the Impacts of Various Factors on Treetop Detection Using LiDAR-Derived Canopy Height Models. IEEE Trans. Geosci. Remote Sens. 2019;57:10099–10115. doi: 10.1109/TGRS.2019.2931408. DOI
Yang X., Strahler A.H., Schaaf C.B., Jupp D.L.B., Yao T., Zhao F., Wang Z., Culvenor D.S., Newnham G.J., Lovell J.L., et al. Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (Echidna) Remote Sens. Environ. 2013;7:36–51. doi: 10.1016/j.rse.2013.03.020. DOI
Iizuka K., Yonehara T., Itoh M., Kosugi Y. Estimating Tree Height and Diameter at Breast Height (DBH) from Digital Surface Models and Orthophotos Obtained with an Unmanned Aerial System for a Japanese Cypress (Chamaecyparis obtusa) Forest. Remote Sens. 2017;10:13. doi: 10.3390/rs10010013. DOI
Panagiotidis D., Abdollahnejad A., Surový P., Chiteculo V. Determining tree height and crown diameter from high-resolution UAV imagery. Int. J. Remote Sens. 2017;38:2392–2410. doi: 10.1080/01431161.2016.1264028. DOI
Abdollahnejad A., Panagiotidis D., Surový P., Ulbrichová I. UAV Capability to Detect and Interpret Solar Radiation as a Potential Replacement Method to Hemispherical Photography. Remote Sens. 2018;10:423. doi: 10.3390/rs10030423. DOI
Surový P., Almeida Ribeiro N., Panagiotidis D. Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems. Int. J. Remote Sens. 2018;39:1–15. doi: 10.1080/01431161.2018.1434329. DOI
Liang X., Hyyppa J. Automatic Stem Mapping by Merging Several Terrestrial Laser Scans at the Feature and Decision Levels. Sensors. 2013;13:1614–1634. doi: 10.3390/s130201614. PubMed DOI PMC
Srinivasan S., Popescu S., Eriksson M., Sheridan R.D., Ku N.-W. Terrestrial Laser Scanning as an Effective Tool to Retrieve Tree Level Height, Crown Width, and Stem Diameter. Remote Sens. 2015;7:1877–1896. doi: 10.3390/rs70201877. DOI
Panagiotidis D., Surový P., Kuželka K. Accuracy of Structure from Motion models in comparison with terrestrial laser scanner for the analysis of DBH and height influence on error behaviour. J. For. Sci. 2016;62:357–365. doi: 10.17221/92/2015-JFS. DOI
Chen S., Liu H., Feng Z., Shen C., Chen P. Applicability of personal laser scanning in forestry inventory. PLoS ONE. 2019;14:e0211392. doi: 10.1371/journal.pone.0211392. PubMed DOI PMC
Åkerblom M., Raumonen P., Mäkipää R., Kaasalainen M. Automatic tree species recognition with quantitative structure models. Remote Sens. Environ. 2017;191:1–12. doi: 10.1016/j.rse.2016.12.002. DOI
Seidel D., Ammer C. Efficient measurements of basal area in short rotation forests based on terrestrial laser scanning under special consideration of shadowing. iForest Biogeosci. For. 2014;7:227–232. doi: 10.3832/ifor1084-007. DOI
Fernández-Sarría A., Martinez L., Velázquez-Martí B., Sajdak M., Estornell J., Recio J.A. Different methodologies for calculating crown volumes of Platanus hispanica trees using terrestrial laser scanner and a comparison with classical dendrometric measurements. Comput. Electron. Agric. 2013;90:176–185. doi: 10.1016/j.compag.2012.09.017. DOI
Bournez E., Landes T., Saudreau M., Kastendeuch P., Najjar G. From tls point clouds to 3d models of trees: A comparison of existing algorithms for 3d tree reconstruction. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017:113–120. doi: 10.5194/isprs-archives-XLII-2-W3-113-2017. DOI
Culvenor D.S., Newnham G.J., Mellor A., Sims N.C., Haywood A. Automated In-Situ Laser Scanner for Monitoring Forest Leaf Area Index. Sensors. 2014;14:14994–15008. doi: 10.3390/s140814994. PubMed DOI PMC
Kankare V., Vastaranta M., Holopainen M., Räty M., Yu X., Hyyppa J., Hyyppä H., Alho P., Viitala R. Retrieval of Forest Aboveground Biomass and Stem Volume with Airborne Scanning LiDAR. Remote Sens. 2013;5:2257–2274. doi: 10.3390/rs5052257. DOI
Astrup R., Ducey M.J., Granhus A., Ritter T., Von Lüpke N. Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode. Can. J. For. Res. 2014;44:666–676. doi: 10.1139/cjfr-2013-0535. DOI
Mayamanikandan T., Reddy R.S., Jha C. Non-Destructive Tree Volume Estimation using Terrestrial Lidar Data in Teak Dominated Central Indian Forests. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019:100–103. doi: 10.1109/tengarss48957.2019.8976068. DOI
Trimble Realworks 10.2 User Guide. [(accessed on 12 October 2019)];2017 Available online: https://www.trimble.com/3d-laser-scanning/realworks.aspx.
Zhang W., Qi J., Wan P., Wang H., Xie D., Wang X., Yan G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016;8:501. doi: 10.3390/rs8060501. DOI
Corral-Rivas J.J., Barrio-Anta M., Aguirre-Calderón O.A., Diéguez-Aranda U. Use of stump diameter to estimate diameter at breast height and tree volume for major pine species in El Salto, Durango (Mexico) Forestry. 2007;80:29–40. doi: 10.1093/forestry/cpl048. DOI
Popescu S., Wynne R.H., Nelson R.F. Estimating plot-level tree heights with lidar: Local filtering with a canopy-height based variable window size. Comput. Electron. Agric. 2002;37:71–95. doi: 10.1016/S0168-1699(02)00121-7. DOI
Rousseeuw P.J., Kaufman L. Finding groups in data. Ser. Probab. Math. Stat. 2003;34:111–112.
Bucher I. CircleFit. [(accessed on 15 December 2016)];2004 Available online: https://se.mathworks.com/matlabcentral/fileexchang/5557-circle-fit/content/circfit.m.
Petráš R., Pajtík J. Sústava česko-slovenských objemových tabuliek drevín. Lesnický Časopis. 1991;1:49–56.
Lehtomäki M., Lehtomäki M., Liang X., Pyorala J., Kukko A., Jaakkola A., Liu J., Feng Z., Chen R., Hyyppä J. Is field-measured tree height as reliable as believed—A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS J. Photogramm. Remote Sens. 2019;147:132–145. doi: 10.1016/j.isprsjprs.2018.11.008. DOI
Olofsson K., Holmgren J., Olsson H. Tree Stem and Height Measurements using Terrestrial Laser Scanning and the RANSAC Algorithm. Remote Sens. 2014;6:4323–4344. doi: 10.3390/rs6054323. DOI
Srinivasan S., Popescu S.C., Eriksson M., Sheridan R.D., Ku N.-W. Multi-temporal terrestrial laser scanning for modeling tree biomass change. For. Ecol. Manag. 2014;318:304–317. doi: 10.1016/j.foreco.2014.01.038. DOI
Liu G., Wang J., Dong P., Chen Y., Liu Z. Estimating Individual Tree Height and Diameter at Breast Height (DBH) from Terrestrial Laser Scanning (TLS) Data at Plot Level. Forests. 2018;9:398. doi: 10.3390/f9070398. DOI
Moskal L.M., Zheng G. Retrieving Forest Inventory Variables with Terrestrial Laser Scanning (TLS) in Urban Heterogeneous Forest. Remote Sens. 2011;4:1–20. doi: 10.3390/rs4010001. DOI
Kankare V., Holopainen M., Vastaranta M., Puttonen E., Yu X., Hyyppä J., Vaaja M., Hyyppä H., Alho P. Individual tree biomass estimation using terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 2013;75:64–75. doi: 10.1016/j.isprsjprs.2012.10.003. DOI
Donager J., Sankey T., Sankey J.B., Meador A.J.S., Springer A.E., Bailey J.D. Examining Forest Structure With Terrestrial Lidar: Suggestions and Novel Techniques Based on Comparisons Between Scanners and Forest Treatments. Earth Space Sci. 2018;5:753–776. doi: 10.1029/2018EA000417. DOI
Giannetti F., Puletti N., Quatrini V., Travaglini D., Bottalico F., Corona P., Chirici G. Integrating terrestrial and airborne laser scanning for the assessment of single-tree attributes in Mediterranean forest stands. Eur. J. Remote Sens. 2018;51:795–807. doi: 10.1080/22797254.2018.1482733. DOI
Pitkänen T.P., Raumonen P., Kangas A. Measuring stem diameters with TLS in boreal forests by complementary fitting procedure. ISPRS J. Photogramm. Remote Sens. 2019;147:294–306. doi: 10.1016/j.isprsjprs.2018.11.027. DOI
Wang P., Li R., Bu G., Zhao R. Automated low-cost terrestrial laser scanner for measuring diameters at breast height and heights of plantation trees. PLoS ONE. 2019;14:e0209888. doi: 10.1371/journal.pone.0209888. PubMed DOI PMC
Olschofsky K., Mues V., Köhl M. Operational assessment of aboveground tree volume and biomass by terrestrial laser scanning. Comput. Electron. Agric. 2016;127:699–707. doi: 10.1016/j.compag.2016.07.030. DOI
Saarinen N., Kankare V., Vastaranta M., Luoma V., Pyörälä J., Tanhuanpää T., Liang X., Kaartinen H., Kukko A., Jaakkola A., et al. Feasibility of Terrestrial laser scanning for collecting stem volume information from single trees. ISPRS J. Photogramm. Remote Sens. 2017;123:140–158. doi: 10.1016/j.isprsjprs.2016.11.012. DOI
Lau A., Bentley L.P., Martius C., Shenkin A., Bartholomeus H., Raumonen P., Malhi Y., Jackson T., Herold M. Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling. Trees. 2018;32:1219–1231. doi: 10.1007/s00468-018-1704-1. DOI