Lyophilized Polyvinylpyrrolidone Hydrogel for Culture of Human Oral Mucosa Stem Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
4993/2020/CIB
Universidad Autónoma del Estado de México
2020-000021-01EXTV-00235
Consejo Nacional de Ciencia y Tecnología
2019-000029-01EXTV-00070
Consejo Nacional de Ciencia y Tecnología
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33466418
PubMed Central
PMC7796241
DOI
10.3390/ma14010227
PII: ma14010227
Knihovny.cz E-zdroje
- Klíčová slova
- hydrogel, lyophilisation, nano-computed tomography, oral mucosa, polyvinylpyrrolidone, porosity, stem cell,
- Publikační typ
- časopisecké články MeSH
This work shows the synthesis of a polyvinylpyrrolidone (PVP) hydrogel by heat-activated polymerization and explores the production of hydrogels with an open porous network by lyophilisation to allow the three-dimensional culture of human oral mucosa stem cells (hOMSCs). The swollen hydrogel showed a storage modulus similar to oral mucosa and elastic solid rheological behaviour without sol transition. A comprehensive characterization of porosity by scanning electron microscopy, mercury intrusion porosimetry and nano-computed tomography (with spatial resolution below 1 μm) showed that lyophilisation resulted in the heterogeneous incorporation of closed oval-like pores in the hydrogel with broad size distribution (5 to 180 μm, d50 = 65 μm). Human oral mucosa biopsies were used to isolate hOMSCs, expressing typical markers of mesenchymal stem cells in more than 95% of the cell population. Direct contact cytotoxicity assay demonstrated that PVP hydrogel have no negative effect on cell metabolic activity, allowing the culture of hOMSCs with normal fusiform morphology. Pore connectivity should be improved in future to allow cell growth in the bulk of the PVP hydrogel.
Zobrazit více v PubMed
Teodorescu M., Bercea M. Poly(vinylpyrrolidone) A Versatile Polymer for Biomedical and Beyond Medical Applications. Polym. Plast. Technol. Eng. 2015;54:923–943. doi: 10.1080/03602559.2014.979506. DOI
Lim J.I., Im H., Lee W.K. Fabrication of porous chitosan-polyvinyl pyrroldidone scaffolds from a quaternary system via phase separation. J. Biomater. Sci. Polym. Ed. 2015;26:32–41. doi: 10.1080/09205063.2014.979386. PubMed DOI
Anwar M., Pervaiz F., Shoukat H., Noreen S., Shabbir K., Majeed A., Ijaz S. Formulation and evaluation of interpenetrating network of xanthan gum and polyvinylpyrrolidone as a hydrophilic matrix for controlled drug delivery system. Polym. Bull. 2020 doi: 10.1007/s00289-019-03092-4. DOI
Huang M., Hou Y., Li Y., Wang D., Zhang L. High performances of dual network PVA hydrogel modified by PVP using borax as the structure forming accelerator. Des. Monomers Polym. 2017;20:505–513. doi: 10.1080/15685551.2017.1382433. PubMed DOI PMC
Ng S.L., Such G.K., Johnston A.P.R., Antequera-García G., Carusoa F. Controlled release of DNA from poly (vinylpyrrolidone) capsules using cleavable linkers. Biomaterials. 2011;32:6277–6284. doi: 10.1016/j.biomaterials.2011.05.011. PubMed DOI
Hu W., Wang Z., Xiao Y., Zhang S., Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 2019;7:843–855. doi: 10.1039/C8BM01246F. PubMed DOI
Archana D., Singh B.K., Dutta J., Dutta P.K. Chitosan-PVP-nano silver oxide wound dressing: In vitro and in vivo evaluation. Int. J. Biol. Macromol. 2015;73:49–57. doi: 10.1016/j.ijbiomac.2014.10.055. PubMed DOI
Akhmanova M., Osidak E., Domogatsky S., Rodin S., Domogatskaya A. Physical, Spatial, and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to Stem Cells Research. Stem Cells Int. 2015;2015:67025. doi: 10.1155/2015/167025. PubMed DOI PMC
Ghosh M., Halperin-Sternfeld M., Adler-Abramovich L. Bio mimicking of extracellular matrix. Adv. Exp. Med. Biol. 2019;1174:371–399. PubMed
Catoira M.C., Fusaro L., Di Francesco D., Ramella M., Boccafoschi F. Overview of natural hydrogels for regenerative medicine. J. Mater. Sci. Mater. Med. 2019;30:115–125. doi: 10.1007/s10856-019-6318-7. PubMed DOI PMC
Perez R.A., Mestres G. Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater. Sci. Eng. C. 2016;61:922–939. doi: 10.1016/j.msec.2015.12.087. PubMed DOI
Autissier A., Le Visage C., Pouzet C., Chaubet F., Letourneur D. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater. 2010;6:3640–3648. doi: 10.1016/j.actbio.2010.03.004. PubMed DOI
Caballé-Serrano J., Zhang S., Ferrantino L., Simion R., Chappuis V., Bosshardt D.D. Tissue Response to a Porous Collagen Matrix Used for Soft Tissue Augmentation. Materials. 2019;12:3721. doi: 10.3390/ma12223721. PubMed DOI PMC
Li X., Rombouts W., Van der Gucht J., De Vries R., Dijksam J.A. Mechanics of composite hydrogels approaching phase separation. PLoS ONE. 2019;14:e0211059. doi: 10.1371/journal.pone.0211059. PubMed DOI PMC
Wu Y., Chen Y.X., Yan J., Yang S., Dong P., Soman P. Fabrication of conductive polyaniline hydrogel using porogen leaching and projection micro-stereolithography. J. Mater. Chem. B. 2015;3:5352–5360. doi: 10.1039/C5TB00629E. PubMed DOI
Tang Y., Lin S., Yin S., Jiang F., Zhou M., Yang G., Sun N., Zhang W., Jiang X. In situ gas foaming based on magnesium particle degradation: A novel approach to fabricate injectable macroporous hydrogels. Biomaterials. 2020;232:119727. doi: 10.1016/j.biomaterials.2019.119727. PubMed DOI
Hassan C.M., Peppas N.A. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules. 2000;33:2472–2479. doi: 10.1021/ma9907587. DOI
Morariu S., Bercea M., Teodorescu M., Avadanei M. Tailoring the properties of poly(vinyl alcohol)/poly(vinylpyrrolidone) hydrogels for biomedical applications. Eur. Polym. J. 2016;84:313–325. doi: 10.1016/j.eurpolymj.2016.09.033. DOI
Babrnáková J., Pavliňáková V., Brtníková J., Sedláček P., Prosecká E., Rampichová M., Filová E., Hearnden V., Vojtová L. Synergistic effect of bovine platelet lysate and various polysaccharides on the biological properties of collagen-based scaffolds for tissue engineering: Scaffold preparation, chemo-physical characterization, in vitro and ex ovo evaluation. Mater. Sci. Eng. C. 2019;100:236246. doi: 10.1016/j.msec.2019.02.092. PubMed DOI
Savina I., Ingavle G., Cundy A., Mikhalovsky S.V. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications. Sci. Rep. 2016;6:21154. doi: 10.1038/srep21154. PubMed DOI PMC
Grenier J., Duval H., Barou F., Lv P., David B., Letourneur D. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Acta Biomater. 2019;94:195–203. doi: 10.1016/j.actbio.2019.05.070. PubMed DOI
Teixeira M.A., Amorim M., Felgueiras H.P. Poly(Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications. Polymers. 2019;12:7. doi: 10.3390/polym12010007. PubMed DOI PMC
Risbud M.V., Bhonde M.R., Bhonde R.R. Effect of chitosan-polyvinyl pyrrolidone hydrogel on proliferation and cytokine expression of endothelial cells: Implications in islet immunoisolation. J. Biomed. Mater. Res. 2001;57:300–305. doi: 10.1002/1097-4636(200111)57:2<300::AID-JBM1171>3.0.CO;2-Q. PubMed DOI
Wang F., Yu M., Yan X., Wen Y., Zeng Q., Yue W., Yang P., Pei X. Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration. Stem Cells Dev. 2011;20:2093–2102. doi: 10.1089/scd.2010.0523. PubMed DOI
Han J., Menicanin D., Marino V., Ge S., Mrozik K., Gronthos S., Bartold P.M. Assessment of the regenerative potential of allogeneic periodontal ligament stem cells in a rodent periodontal defect model. J. Periodontal Res. 2014;49:333–345. doi: 10.1111/jre.12111. PubMed DOI
Diomede F., Gugliandolo A., Cardelli P. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: A new tool for bone defect repair. Stem Cell Res. Ther. 2018;9:104. doi: 10.1186/s13287-018-0850-0. PubMed DOI PMC
Zhang Q.Z., Nguyen A.L., Yu W.H., Le A.D. Human oral mucosa and gingiva: A unique reservoir for mesenchymal stem cells. J. Dent. Res. 2012;91:1011–1018. doi: 10.1177/0022034512461016. PubMed DOI PMC
Marynka-Kalmani K., Treves S., Yafee M., Rachima H., Gafni Y., Cohen M.A., Pitaru S. The Lamina Propria of Adult Human Oral Mucosa Harbors a Novel Stem Cell Population. Stem Cells. 2010;28:984–995. doi: 10.1002/stem.425. PubMed DOI
Schmelzer E., McKeel D., Jörg G. Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies. BioMed Res. Int. 2019;5:1–13. doi: 10.1155/2019/6376271. PubMed DOI PMC
Hernández-Monjaraz B., Santiago-Osorio E., Monroy-García A., Ledesma-Martínez E., Mendoza-Núñez V.M. Mesenchymal Stem Cells of Dental Origin for Inducing Tissue Regeneration in Periodontitis: A Mini-Review. Int. J. Mol. Sci. 2018;19:944. doi: 10.3390/ijms19040944. PubMed DOI PMC
Schop D., Janssen F.W., van Rijn L., Fernandes H., Bloem R.M., De Bruijn J.D., Van Dijkhuizen-Radersma R. Growth, Metabolism, and Growth Inhibitors of Mesenchymal Stem Cells. Tissue Eng. Part A. 2009;15:1877–1886. doi: 10.1089/ten.tea.2008.0345. PubMed DOI
Oliver-Urrutia C., Rosales-Ibañez R., Domínguez-García M.V., Flores-Estrada J., Flores-Merino M.V. Synthesis and evaluation of poly acrylic acid/polyvinylpyrrolidone interpenetrating network as a matrix for oral mucosa cells. J. Biomater. Appl. 2020;34:998–1008. doi: 10.1177/0885328219883482. PubMed DOI
Flores-Merino M.V., Chirasatitsin S., Lo Presti C. Nanoscopic mechanical anisotropy in hydrogel surfaces. Soft Matter. 2010;6:4466–4470. doi: 10.1039/c0sm00339e. PubMed DOI PMC
Paganin D., Mayo S.C., Gureyev T.E., Miller P.R., Wilkins S.W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 2002;206:33–40. doi: 10.1046/j.1365-2818.2002.01010.x. PubMed DOI
Van Aarle W., Palenstijn W.J., Cant J., Janssens E., Bleichrodt F., Dabravolski A., De Beenhouwer J., Batenburg K.J., Sijbers J. Fast and flexible X-ray tomography using the ASTRA toolbox. Opt. Express. 2016;24:25129–25147. doi: 10.1364/OE.24.025129. PubMed DOI
Shi Y., Xiong D., Liu Y., Wang N., Zhao X. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution. Mater. Sci. Eng. C. 2016;65:172–180. doi: 10.1016/j.msec.2016.04.042. PubMed DOI
Fanesi G., Abrami M., Zecchin F., Giassi I., Dal Ferro E., Boisen A., Grassi G., Bertoncin P., Grassi M., Marizza P. Combined Used of Rheology and LF-NMR for the Characterization of PVP-Alginates Gels Containing Liposomes. Pharm. Res. 2018;35:171. doi: 10.1007/s11095-018-2427-0. PubMed DOI
Alsarra I.A., Hamed A.Y., Alanazi F.K., Neau S.H. Rheological and mucoadhesive characterization of poly (vinylpyrrolidone) hydrogels designed for nasal mucosal drug. Arch. Pharm. Res. 2011;34:573–582. doi: 10.1007/s12272-011-0407-6. PubMed DOI
El-Sayed K.M.F., Paris S., Becker S., Kaseem N., Ungefroren H., Fändrich F., Wiltfang J., Dörfer C. Isolation and characterization of multipotent postnatal stem/progenitor cells from human alveolar bone proper. J. Craniomaxillofac. Surg. 2012;40:735–742. doi: 10.1016/j.jcms.2012.01.010. PubMed DOI
Lopérgolo L.C., Lugao A.B., Catalini L.H. Direct UV photocrosslinking of poly (N-vinyl-2-pyrrolidone) (PVP) to produce hydrogels. Polymer. 2003;44:6217–6222. doi: 10.1016/S0032-3861(03)00686-4. DOI
Cheng S., Gandevia S.C., Green M., Sinkus R., Bilston L.E. Viscoelastic properties of the tongue and soft palate using MR elastography. J. Biomech. 2011;44:450–454. doi: 10.1016/j.jbiomech.2010.09.027. PubMed DOI
Chen J., Ahmad R., Li W., Swain M., Ki Q. Biomechanics of oral mucosa. J. R. Soc. Interface. 2015;12:20150325. doi: 10.1098/rsif.2015.0325. PubMed DOI PMC
Cameron A.R., Frith J.E., Cooper-White J.J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials. 2011;32:5979–5993. doi: 10.1016/j.biomaterials.2011.04.003. PubMed DOI
Barber-Pérez N., Georgiadou M., Guzmán C., Isomursu A., Hamidi H., Ivaska J. Mechano-responsiveness of Fibrillar Adhesions on Stiffness-Gradient Gels. J. Cell Sci. 2020;133:242909. doi: 10.1242/jcs.242909. PubMed DOI PMC
Das P., Salerno S., Remigy J.C., Lahitte J.F., Bacchin P., De Bartolo L. Double porous poly (Ɛ-caprolactone)/chitosan membrane scaffolds as niches for human mesenchymal stem cells. Colloids Surf. B. 2019;184:110493. doi: 10.1016/j.colsurfb.2019.110493. PubMed DOI
Bonartsev A.P., Zharkova I.I., Voinova V.V., Kuznetsova E.S., Zhuikov V.A., Makhina T.K., Myshkina V.L., Potashnikova D.M., Chesnokova D.V., Khaydapova D.D., et al. Poly (3-hydroxybutyrate)/poly(ethylene glycol) scaffolds with different microstructure: The effect on growth of mesenchymal stem cells. 3 Biotech. 2018;8:328. doi: 10.1007/s13205-018-1350-8. PubMed DOI PMC
Annabi N., Nichol J.W., Zhong X., Ji C., Koshy S., Khademhosseini A., Dehghani F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B. 2010;16:371–383. doi: 10.1089/ten.teb.2009.0639. PubMed DOI PMC
Romero E., Simms P.H. Microstructure investigation in unsaturated soils: A Review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy. Geotech. Geol. Eng. 2008;26:705–727. doi: 10.1007/s10706-008-9204-5. DOI
Lawyer T., McIntosh K., Clavijo C., Potekhina L., Mann B.K. Formulation Changes Affect Material Properties and Cell Behavior in HA-Based Hydrogels. Int. J. Cell Biol. 2012;2012:1–9. doi: 10.1155/2012/737421. PubMed DOI PMC
Izgordu M.S., Uzgur E.I., Ulag S., Sahin A., Yilmaz B.K., Kilic B., Ekren N., Oktar F.N., Gunduz O. Investigation of 3D-Printed Polycaprolactone-/Polyvinylpyrrolidone-Based Constructs. Cartilage. 2019;1:1–10. doi: 10.1177/1947603519897302. PubMed DOI PMC
Xiong S., Wang J., Zhu W., Yang K., Ding G., Li X., Eun D.D. Onlay repair technique for the management of ureteral strictures: A comprehensive review. Biomed Res. Int. 2020;27:6178286. doi: 10.1155/2020/6178286. PubMed DOI PMC
Ganz J., Shor E., Guo S., Sheinin A., Arie I., Michaelevski I., Pitaru S., Offen D., Levenberg S. Implantation of 3D Constructs Embedded with Oral Mucosa-Derived Cells Induces Functional Recovery in Rats with Complete Spinal Cord Transection. Front. Neurosci. 2017;11:589. doi: 10.3389/fnins.2017.00589. PubMed DOI PMC
Egusa H., Sonoyama W., Nishimura M., Atsuta I., Akiyama K. Stem cells in dentistry-part I: Stem cell sources. J. Prosthodont Res. 2012;56:151–165. doi: 10.1016/j.jpor.2012.06.001. PubMed DOI
Abou-Neel E.A., Chrzanowski W., Salih V.M., Kim H.W., Knowles J.C. Tissue engineering in dentistry. J. Dent. 2014;42:915–928. doi: 10.1016/j.jdent.2014.05.008. PubMed DOI