Lyophilized Polyvinylpyrrolidone Hydrogel for Culture of Human Oral Mucosa Stem Cells

. 2021 Jan 05 ; 14 (1) : . [epub] 20210105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33466418

Grantová podpora
4993/2020/CIB Universidad Autónoma del Estado de México
2020-000021-01EXTV-00235 Consejo Nacional de Ciencia y Tecnología
2019-000029-01EXTV-00070 Consejo Nacional de Ciencia y Tecnología
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110 Ministerstvo Školství, Mládeže a Tělovýchovy

This work shows the synthesis of a polyvinylpyrrolidone (PVP) hydrogel by heat-activated polymerization and explores the production of hydrogels with an open porous network by lyophilisation to allow the three-dimensional culture of human oral mucosa stem cells (hOMSCs). The swollen hydrogel showed a storage modulus similar to oral mucosa and elastic solid rheological behaviour without sol transition. A comprehensive characterization of porosity by scanning electron microscopy, mercury intrusion porosimetry and nano-computed tomography (with spatial resolution below 1 μm) showed that lyophilisation resulted in the heterogeneous incorporation of closed oval-like pores in the hydrogel with broad size distribution (5 to 180 μm, d50 = 65 μm). Human oral mucosa biopsies were used to isolate hOMSCs, expressing typical markers of mesenchymal stem cells in more than 95% of the cell population. Direct contact cytotoxicity assay demonstrated that PVP hydrogel have no negative effect on cell metabolic activity, allowing the culture of hOMSCs with normal fusiform morphology. Pore connectivity should be improved in future to allow cell growth in the bulk of the PVP hydrogel.

Zobrazit více v PubMed

Teodorescu M., Bercea M. Poly(vinylpyrrolidone) A Versatile Polymer for Biomedical and Beyond Medical Applications. Polym. Plast. Technol. Eng. 2015;54:923–943. doi: 10.1080/03602559.2014.979506. DOI

Lim J.I., Im H., Lee W.K. Fabrication of porous chitosan-polyvinyl pyrroldidone scaffolds from a quaternary system via phase separation. J. Biomater. Sci. Polym. Ed. 2015;26:32–41. doi: 10.1080/09205063.2014.979386. PubMed DOI

Anwar M., Pervaiz F., Shoukat H., Noreen S., Shabbir K., Majeed A., Ijaz S. Formulation and evaluation of interpenetrating network of xanthan gum and polyvinylpyrrolidone as a hydrophilic matrix for controlled drug delivery system. Polym. Bull. 2020 doi: 10.1007/s00289-019-03092-4. DOI

Huang M., Hou Y., Li Y., Wang D., Zhang L. High performances of dual network PVA hydrogel modified by PVP using borax as the structure forming accelerator. Des. Monomers Polym. 2017;20:505–513. doi: 10.1080/15685551.2017.1382433. PubMed DOI PMC

Ng S.L., Such G.K., Johnston A.P.R., Antequera-García G., Carusoa F. Controlled release of DNA from poly (vinylpyrrolidone) capsules using cleavable linkers. Biomaterials. 2011;32:6277–6284. doi: 10.1016/j.biomaterials.2011.05.011. PubMed DOI

Hu W., Wang Z., Xiao Y., Zhang S., Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 2019;7:843–855. doi: 10.1039/C8BM01246F. PubMed DOI

Archana D., Singh B.K., Dutta J., Dutta P.K. Chitosan-PVP-nano silver oxide wound dressing: In vitro and in vivo evaluation. Int. J. Biol. Macromol. 2015;73:49–57. doi: 10.1016/j.ijbiomac.2014.10.055. PubMed DOI

Akhmanova M., Osidak E., Domogatsky S., Rodin S., Domogatskaya A. Physical, Spatial, and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to Stem Cells Research. Stem Cells Int. 2015;2015:67025. doi: 10.1155/2015/167025. PubMed DOI PMC

Ghosh M., Halperin-Sternfeld M., Adler-Abramovich L. Bio mimicking of extracellular matrix. Adv. Exp. Med. Biol. 2019;1174:371–399. PubMed

Catoira M.C., Fusaro L., Di Francesco D., Ramella M., Boccafoschi F. Overview of natural hydrogels for regenerative medicine. J. Mater. Sci. Mater. Med. 2019;30:115–125. doi: 10.1007/s10856-019-6318-7. PubMed DOI PMC

Perez R.A., Mestres G. Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater. Sci. Eng. C. 2016;61:922–939. doi: 10.1016/j.msec.2015.12.087. PubMed DOI

Autissier A., Le Visage C., Pouzet C., Chaubet F., Letourneur D. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater. 2010;6:3640–3648. doi: 10.1016/j.actbio.2010.03.004. PubMed DOI

Caballé-Serrano J., Zhang S., Ferrantino L., Simion R., Chappuis V., Bosshardt D.D. Tissue Response to a Porous Collagen Matrix Used for Soft Tissue Augmentation. Materials. 2019;12:3721. doi: 10.3390/ma12223721. PubMed DOI PMC

Li X., Rombouts W., Van der Gucht J., De Vries R., Dijksam J.A. Mechanics of composite hydrogels approaching phase separation. PLoS ONE. 2019;14:e0211059. doi: 10.1371/journal.pone.0211059. PubMed DOI PMC

Wu Y., Chen Y.X., Yan J., Yang S., Dong P., Soman P. Fabrication of conductive polyaniline hydrogel using porogen leaching and projection micro-stereolithography. J. Mater. Chem. B. 2015;3:5352–5360. doi: 10.1039/C5TB00629E. PubMed DOI

Tang Y., Lin S., Yin S., Jiang F., Zhou M., Yang G., Sun N., Zhang W., Jiang X. In situ gas foaming based on magnesium particle degradation: A novel approach to fabricate injectable macroporous hydrogels. Biomaterials. 2020;232:119727. doi: 10.1016/j.biomaterials.2019.119727. PubMed DOI

Hassan C.M., Peppas N.A. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules. 2000;33:2472–2479. doi: 10.1021/ma9907587. DOI

Morariu S., Bercea M., Teodorescu M., Avadanei M. Tailoring the properties of poly(vinyl alcohol)/poly(vinylpyrrolidone) hydrogels for biomedical applications. Eur. Polym. J. 2016;84:313–325. doi: 10.1016/j.eurpolymj.2016.09.033. DOI

Babrnáková J., Pavliňáková V., Brtníková J., Sedláček P., Prosecká E., Rampichová M., Filová E., Hearnden V., Vojtová L. Synergistic effect of bovine platelet lysate and various polysaccharides on the biological properties of collagen-based scaffolds for tissue engineering: Scaffold preparation, chemo-physical characterization, in vitro and ex ovo evaluation. Mater. Sci. Eng. C. 2019;100:236246. doi: 10.1016/j.msec.2019.02.092. PubMed DOI

Savina I., Ingavle G., Cundy A., Mikhalovsky S.V. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications. Sci. Rep. 2016;6:21154. doi: 10.1038/srep21154. PubMed DOI PMC

Grenier J., Duval H., Barou F., Lv P., David B., Letourneur D. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Acta Biomater. 2019;94:195–203. doi: 10.1016/j.actbio.2019.05.070. PubMed DOI

Teixeira M.A., Amorim M., Felgueiras H.P. Poly(Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications. Polymers. 2019;12:7. doi: 10.3390/polym12010007. PubMed DOI PMC

Risbud M.V., Bhonde M.R., Bhonde R.R. Effect of chitosan-polyvinyl pyrrolidone hydrogel on proliferation and cytokine expression of endothelial cells: Implications in islet immunoisolation. J. Biomed. Mater. Res. 2001;57:300–305. doi: 10.1002/1097-4636(200111)57:2<300::AID-JBM1171>3.0.CO;2-Q. PubMed DOI

Wang F., Yu M., Yan X., Wen Y., Zeng Q., Yue W., Yang P., Pei X. Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration. Stem Cells Dev. 2011;20:2093–2102. doi: 10.1089/scd.2010.0523. PubMed DOI

Han J., Menicanin D., Marino V., Ge S., Mrozik K., Gronthos S., Bartold P.M. Assessment of the regenerative potential of allogeneic periodontal ligament stem cells in a rodent periodontal defect model. J. Periodontal Res. 2014;49:333–345. doi: 10.1111/jre.12111. PubMed DOI

Diomede F., Gugliandolo A., Cardelli P. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: A new tool for bone defect repair. Stem Cell Res. Ther. 2018;9:104. doi: 10.1186/s13287-018-0850-0. PubMed DOI PMC

Zhang Q.Z., Nguyen A.L., Yu W.H., Le A.D. Human oral mucosa and gingiva: A unique reservoir for mesenchymal stem cells. J. Dent. Res. 2012;91:1011–1018. doi: 10.1177/0022034512461016. PubMed DOI PMC

Marynka-Kalmani K., Treves S., Yafee M., Rachima H., Gafni Y., Cohen M.A., Pitaru S. The Lamina Propria of Adult Human Oral Mucosa Harbors a Novel Stem Cell Population. Stem Cells. 2010;28:984–995. doi: 10.1002/stem.425. PubMed DOI

Schmelzer E., McKeel D., Jörg G. Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies. BioMed Res. Int. 2019;5:1–13. doi: 10.1155/2019/6376271. PubMed DOI PMC

Hernández-Monjaraz B., Santiago-Osorio E., Monroy-García A., Ledesma-Martínez E., Mendoza-Núñez V.M. Mesenchymal Stem Cells of Dental Origin for Inducing Tissue Regeneration in Periodontitis: A Mini-Review. Int. J. Mol. Sci. 2018;19:944. doi: 10.3390/ijms19040944. PubMed DOI PMC

Schop D., Janssen F.W., van Rijn L., Fernandes H., Bloem R.M., De Bruijn J.D., Van Dijkhuizen-Radersma R. Growth, Metabolism, and Growth Inhibitors of Mesenchymal Stem Cells. Tissue Eng. Part A. 2009;15:1877–1886. doi: 10.1089/ten.tea.2008.0345. PubMed DOI

Oliver-Urrutia C., Rosales-Ibañez R., Domínguez-García M.V., Flores-Estrada J., Flores-Merino M.V. Synthesis and evaluation of poly acrylic acid/polyvinylpyrrolidone interpenetrating network as a matrix for oral mucosa cells. J. Biomater. Appl. 2020;34:998–1008. doi: 10.1177/0885328219883482. PubMed DOI

Flores-Merino M.V., Chirasatitsin S., Lo Presti C. Nanoscopic mechanical anisotropy in hydrogel surfaces. Soft Matter. 2010;6:4466–4470. doi: 10.1039/c0sm00339e. PubMed DOI PMC

Paganin D., Mayo S.C., Gureyev T.E., Miller P.R., Wilkins S.W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 2002;206:33–40. doi: 10.1046/j.1365-2818.2002.01010.x. PubMed DOI

Van Aarle W., Palenstijn W.J., Cant J., Janssens E., Bleichrodt F., Dabravolski A., De Beenhouwer J., Batenburg K.J., Sijbers J. Fast and flexible X-ray tomography using the ASTRA toolbox. Opt. Express. 2016;24:25129–25147. doi: 10.1364/OE.24.025129. PubMed DOI

Shi Y., Xiong D., Liu Y., Wang N., Zhao X. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution. Mater. Sci. Eng. C. 2016;65:172–180. doi: 10.1016/j.msec.2016.04.042. PubMed DOI

Fanesi G., Abrami M., Zecchin F., Giassi I., Dal Ferro E., Boisen A., Grassi G., Bertoncin P., Grassi M., Marizza P. Combined Used of Rheology and LF-NMR for the Characterization of PVP-Alginates Gels Containing Liposomes. Pharm. Res. 2018;35:171. doi: 10.1007/s11095-018-2427-0. PubMed DOI

Alsarra I.A., Hamed A.Y., Alanazi F.K., Neau S.H. Rheological and mucoadhesive characterization of poly (vinylpyrrolidone) hydrogels designed for nasal mucosal drug. Arch. Pharm. Res. 2011;34:573–582. doi: 10.1007/s12272-011-0407-6. PubMed DOI

El-Sayed K.M.F., Paris S., Becker S., Kaseem N., Ungefroren H., Fändrich F., Wiltfang J., Dörfer C. Isolation and characterization of multipotent postnatal stem/progenitor cells from human alveolar bone proper. J. Craniomaxillofac. Surg. 2012;40:735–742. doi: 10.1016/j.jcms.2012.01.010. PubMed DOI

Lopérgolo L.C., Lugao A.B., Catalini L.H. Direct UV photocrosslinking of poly (N-vinyl-2-pyrrolidone) (PVP) to produce hydrogels. Polymer. 2003;44:6217–6222. doi: 10.1016/S0032-3861(03)00686-4. DOI

Cheng S., Gandevia S.C., Green M., Sinkus R., Bilston L.E. Viscoelastic properties of the tongue and soft palate using MR elastography. J. Biomech. 2011;44:450–454. doi: 10.1016/j.jbiomech.2010.09.027. PubMed DOI

Chen J., Ahmad R., Li W., Swain M., Ki Q. Biomechanics of oral mucosa. J. R. Soc. Interface. 2015;12:20150325. doi: 10.1098/rsif.2015.0325. PubMed DOI PMC

Cameron A.R., Frith J.E., Cooper-White J.J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials. 2011;32:5979–5993. doi: 10.1016/j.biomaterials.2011.04.003. PubMed DOI

Barber-Pérez N., Georgiadou M., Guzmán C., Isomursu A., Hamidi H., Ivaska J. Mechano-responsiveness of Fibrillar Adhesions on Stiffness-Gradient Gels. J. Cell Sci. 2020;133:242909. doi: 10.1242/jcs.242909. PubMed DOI PMC

Das P., Salerno S., Remigy J.C., Lahitte J.F., Bacchin P., De Bartolo L. Double porous poly (Ɛ-caprolactone)/chitosan membrane scaffolds as niches for human mesenchymal stem cells. Colloids Surf. B. 2019;184:110493. doi: 10.1016/j.colsurfb.2019.110493. PubMed DOI

Bonartsev A.P., Zharkova I.I., Voinova V.V., Kuznetsova E.S., Zhuikov V.A., Makhina T.K., Myshkina V.L., Potashnikova D.M., Chesnokova D.V., Khaydapova D.D., et al. Poly (3-hydroxybutyrate)/poly(ethylene glycol) scaffolds with different microstructure: The effect on growth of mesenchymal stem cells. 3 Biotech. 2018;8:328. doi: 10.1007/s13205-018-1350-8. PubMed DOI PMC

Annabi N., Nichol J.W., Zhong X., Ji C., Koshy S., Khademhosseini A., Dehghani F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B. 2010;16:371–383. doi: 10.1089/ten.teb.2009.0639. PubMed DOI PMC

Romero E., Simms P.H. Microstructure investigation in unsaturated soils: A Review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy. Geotech. Geol. Eng. 2008;26:705–727. doi: 10.1007/s10706-008-9204-5. DOI

Lawyer T., McIntosh K., Clavijo C., Potekhina L., Mann B.K. Formulation Changes Affect Material Properties and Cell Behavior in HA-Based Hydrogels. Int. J. Cell Biol. 2012;2012:1–9. doi: 10.1155/2012/737421. PubMed DOI PMC

Izgordu M.S., Uzgur E.I., Ulag S., Sahin A., Yilmaz B.K., Kilic B., Ekren N., Oktar F.N., Gunduz O. Investigation of 3D-Printed Polycaprolactone-/Polyvinylpyrrolidone-Based Constructs. Cartilage. 2019;1:1–10. doi: 10.1177/1947603519897302. PubMed DOI PMC

Xiong S., Wang J., Zhu W., Yang K., Ding G., Li X., Eun D.D. Onlay repair technique for the management of ureteral strictures: A comprehensive review. Biomed Res. Int. 2020;27:6178286. doi: 10.1155/2020/6178286. PubMed DOI PMC

Ganz J., Shor E., Guo S., Sheinin A., Arie I., Michaelevski I., Pitaru S., Offen D., Levenberg S. Implantation of 3D Constructs Embedded with Oral Mucosa-Derived Cells Induces Functional Recovery in Rats with Complete Spinal Cord Transection. Front. Neurosci. 2017;11:589. doi: 10.3389/fnins.2017.00589. PubMed DOI PMC

Egusa H., Sonoyama W., Nishimura M., Atsuta I., Akiyama K. Stem cells in dentistry-part I: Stem cell sources. J. Prosthodont Res. 2012;56:151–165. doi: 10.1016/j.jpor.2012.06.001. PubMed DOI

Abou-Neel E.A., Chrzanowski W., Salih V.M., Kim H.W., Knowles J.C. Tissue engineering in dentistry. J. Dent. 2014;42:915–928. doi: 10.1016/j.jdent.2014.05.008. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...