Effect of Nanoparticle Size in Pt/SiO2 Catalyzed Nitrate Reduction in Liquid Phase

. 2021 Jan 14 ; 11 (1) : . [epub] 20210114

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33466654

Effect of platinum nanoparticle size on catalytic reduction of nitrate in liquid phase was examined under ambient conditions by using hydrogen as a reducing agent. For the size effect study, Pt nanoparticles with sizes of 2, 4 and 8 nm were loaded silica support. TEM images of Pt nanoparticles showed that homogeneous morphologies as well as narrow size distributions were achieved during the preparation. All three catalysts showed high activity and were able to reduce nitrate below the recommended limit of 50 mg/L in drinking water. The highest catalytic activity was seen with 8 nm platinum; however, the product selectivity for N2 was highest with 4 nm platinum. In addition, the possibility of PVP capping agent acting as a promoter in the reaction is highlighted.

Zobrazit více v PubMed

Yan H., Lin Y., Wu H., Zhang W., Sun Z., Cheng H., Liu W., Wang C., Li J., Huang X., et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 2017;8:1070. doi: 10.1038/s41467-017-01259-z. PubMed DOI PMC

Rioux R.M., Song H., Hoefelmeyer J.D., Yang A.P., Somorjai G.A. High-surface-area catalyst design: Synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J. Phys. Chem. B. 2005;109:2192–2202. doi: 10.1021/jp048867x. PubMed DOI

Wang H., An K., Sápi A., Liu F., Somorjai G.A. Effects of nanoparticle size and metal/support interactions in Pt-catalyzed methanol oxidation reactions in gas and liquid phases. Catal. Lett. 2014;144:1930–1938. doi: 10.1007/s10562-014-1347-9. DOI

Bai L., Wang X., Chen Q., Ye Y., Zheng H., Guo J., Yin Y., Gao C. Explaining the size dependence in platinum nanoparticle catalyzed hydrogenation reactions. Angew. Chem. Int. Ed. 2016;55:15656–15661. doi: 10.1002/anie.201609663. PubMed DOI

Han B., Miranda C.R., Ceder G. Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: A first-principles study. Phys. Rev. B. 2008;77:075410. doi: 10.1103/PhysRevB.77.075410. DOI

Mojet B., Miller J., Ramaker D., Koningsberger D. A new model describing the metal–support interaction in noble metal catalysts. J. Catal. 1999;186:373–386. doi: 10.1006/jcat.1999.2568. DOI

Tsung C.-K., Kuhn J.N., Huang W., Aliaga C., Hung L.-I., Somorjai G.A., Yang P. Sub-10 nm platinum nanocrystals with size and shape control: Catalytic study for ethylene and pyrrole hydrogenation. J. Am. Chem. Soc. 2009;131:5816–5822. doi: 10.1021/ja809936n. PubMed DOI

Zhang Y., Shi P., Song J., Li Q. Application of nitrogen and oxygen isotopes for source and fate identification of nitrate pollution in surface water: A review. Appl. Sci. 2018;9:18. doi: 10.3390/app9010018. DOI

Singh J., Yadav P., Pal A.K., Mishra V. Sensors in Water Pollutants Monitoring: Role of Material. Springer; Singapore: 2020. Water Pollutants: Origin and Status; pp. 5–20.

European Environment Agency . European Waters—Assessment of Status and Pressures 2018. Publications Office of the European Union; Luxembourg: 2018. p. 85. EEA Report No 7/2018. DOI

Jones R.R., Weyer P.J., Dellavalle C.T., Inoue-Choi M., Anderson K.E., Cantor K.P., Krasner S., Robien K., Freeman L.E.B., Silverman D.T., et al. Nitrate from drinking water and diet and bladder cancer among postmenopausal women in Iowa. Environ. Health Perspect. 2016;124:1751–1758. doi: 10.1289/EHP191. PubMed DOI PMC

Blaisdell J., Turyk M.E., Almberg K.S., Jones R.M., Stayner L. Prenatal exposure to nitrate in drinking water and the risk of congenital anomalies. Environ. Res. 2019;176:108553. doi: 10.1016/j.envres.2019.108553. PubMed DOI PMC

Islam M., Patel R. Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency. Desalination. 2010;256:120–128. doi: 10.1016/j.desal.2010.02.003. DOI

Mena-Durán C.J., Kou M.R.S., Lopez T., Azamar-Barrios J.A., Aguilar D.H., Domínguez M.I., Odriozola J.A., Quintana P. Nitrate removal using natural clays modified by acid thermoactivation. Appl. Surf. Sci. 2007;253:5762–5766. doi: 10.1016/j.apsusc.2006.12.103. DOI

Loganathan P., Vigneswaran S., Kandasamy J. Enhanced removal of nitrate from water using surface modification of adsorbents—A review. J. Environ. Manag. 2013;131:363–374. doi: 10.1016/j.jenvman.2013.09.034. PubMed DOI

Song W., Gao B., Xu X., Wang F., Xue N., Sun S., Song W., Jia R. Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property. J. Hazard. Mater. 2016;304:280–290. doi: 10.1016/j.jhazmat.2015.10.073. PubMed DOI

Kalaruban M., Loganathan P., Kandasamy J., Vigneswaran S. Submerged membrane adsorption hybrid system using four adsorbents to remove nitrate from water. Environ. Sci. Pollut. Res. 2017;25:20328–20335. doi: 10.1007/s11356-017-8905-9. PubMed DOI

Epsztein R., Nir O., Lahav O., Green M. Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme. Chem. Eng. J. 2015;279:372–378. doi: 10.1016/j.cej.2015.05.010. DOI

Rezvani F., Sarrafzadeh M., Ebrahimi S., Oh H.-M. Nitrate removal from drinking water with a focus on biological methods: A review. Environ. Sci. Pollut. Res. 2019;26:1124–1141. doi: 10.1007/s11356-017-9185-0. PubMed DOI

Guy K.A., Xu H., Yang J.C., Werth C.J., Shapley J.R. Catalytic nitrate and nitrite reduction with Pd− Cu/PVP colloids in water: Composition, structure, and reactivity correlations. J. Phys. Chem. C. 2009;113:8177–8185. doi: 10.1021/jp810049y. DOI

Soares O.S.G.P., Órfão J.J.D.M., Pereira M.F.R. Activated carbon supported metal catalysts for nitrate and nitrite reduction in water. Catal. Lett. 2008;126:253–260. doi: 10.1007/s10562-008-9612-4. DOI

Mendow G., Veizaga N., Querini C., Sánchez B. A continuous process for the catalytic reduction of water nitrate. J. Environ. Chem. Eng. 2019;7:102808. doi: 10.1016/j.jece.2018.11.052. DOI

Ruiz-Beviá F., Fernández-Torres M.J. Effective catalytic removal of nitrates from drinking water: An unresolved problem? J. Clean. Prod. 2019;217:398–408. doi: 10.1016/j.jclepro.2019.01.261. DOI

Miyazaki A., Asakawa T., Nakano Y., Balint I. Nitrite reduction on morphologically controlled Pt nanoparticles. Chem. Commun. 2005;29:3730–3732. doi: 10.1039/b505537g. PubMed DOI

Marchesini F.A., Aghemo V., Moreno I., Navascués N., Irusta S., Gutierrez L. Pd and Pd, In nanoparticles supported on polymer fibres as catalysts for the nitrate and nitrite reduction in aqueous media. J. Environ. Chem. Eng. 2020;8:103651. doi: 10.1016/j.jece.2019.103651. DOI

Verho O., Gao F., Johnston E.V., Wan W., Nagendiran A., Zheng H., Bäckvall J.-E., Zou X. Mesoporous silica nanoparticles applied as a support for Pd and Au nanocatalysts in cycloisomerization reactions. APL Mater. 2014;2:113316. doi: 10.1063/1.4901293. DOI

Alayoglu S., Aliaga C., Sprung C., Somorjai G.A. Size and shape dependence on Pt nanoparticles for the methylcyclopentane/hydrogen ring opening/ring enlargement reaction. Catal. Lett. 2011;141:914–924. doi: 10.1007/s10562-011-0647-6. DOI

Modak A., Bhanja P., Bhaumik A. Pt nanoparticles supported over porous porphyrin nanospheres for chemoselective hydrogenation reactions. ChemCatChem. 2019;11:1977–1985. doi: 10.1002/cctc.201802108. DOI

Musselwhite N., Na K., Sabyrov K., Alayoglu S., Somorjai G.A. Mesoporous aluminosilicate catalysts for the selective isomerization of n-Hexane: The roles of surface acidity and platinum metal. J. Am. Chem. Soc. 2015;137:10231–10237. doi: 10.1021/jacs.5b04808. PubMed DOI

An K., Musselwhite N., Kennedy G., Pushkarev V.V., Baker L.R., Somorjai G.A. Preparation of mesoporous oxides and their support effects on Pt nanoparticle catalysts in catalytic hydrogenation of furfural. J. Colloid Interface Sci. 2013;392:122–128. doi: 10.1016/j.jcis.2012.10.029. PubMed DOI

Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. Academic Press; London, UK: 1982. p. 3.

Hamid S., Kumar M.A., Han J.-I., Kim H., Lee W. Nitrate reduction on the surface of bimetallic catalysts supported by nano-crystalline beta-zeolite (NBeta) Green Chem. 2017;19:853–866. doi: 10.1039/C6GC02349E. DOI

Kokkonen R., Sirén H., Kauliomäki S., Rovio S., Luomanperä K. On-line process monitoring of water-soluble ions in pulp and paper machine waters by capillary electrophoresis. J. Chromatogr. A. 2004;1032:243–252. doi: 10.1016/j.chroma.2003.09.033. PubMed DOI

O’Flaherty B., Yang W.-P., Sengupta S., Cholli A.L. Fast detection of anionic components in sugar and wine samples using a novel device based on capillary zone electrophoresis. Food Chem. 2001;74:111–118. doi: 10.1016/S0308-8146(01)00138-8. DOI

Boudart M. Turnover Rates in Heterogeneous Catalysis. Chem. Rev. 1995;95:661–666. doi: 10.1021/cr00035a009. DOI

Umpierre A.P., De Jesús E., Dupont J. Turnover numbers and soluble metal nanoparticles. ChemCatChem. 2011;3:1413–1418. doi: 10.1002/cctc.201100159. DOI

Choi H., Oh S., Park J.Y. High methane selective Pt cluster catalyst supported on Ga2O3 for CO2 hydrogenation. Catal. Today. 2020;352:212–219. doi: 10.1016/j.cattod.2019.11.005. DOI

Zhang Z., Lu J., Zhang B., Shi W., Guo Y., Cui F., FuYi C. Insight into the size effect of Pd nanoparticles on the catalytic reduction of nitrite in water over Pd/C catalysts. Environ. Sci. Nano. 2020;7:2117–2129. doi: 10.1039/D0EN00417K. DOI

Granger P., Troncéa S., Dacquin J., Trentesaux M., Parvulescu V. Support-induced effect on the catalytic properties of Pd particles in water denitrification: Impact of surface and structural features of mesoporous ceria-zirconia support. Appl. Catal. B Environ. 2018;224:648–659. doi: 10.1016/j.apcatb.2017.11.007. DOI

Ebbesen S.D., Mojet B.L., Lefferts L. Effect of pH on the nitrite hydrogenation mechanism over Pd/Al2O3 and Pt/Al2O3: Details obtained with ATR-IR spectroscopy. J. Phys. Chem. C. 2010;115:1186–1194. doi: 10.1021/jp106521t. DOI

Liu Y., Gong X., Yang W., Wang B., Yang Z., Liu Y. Selective reduction of nitrate into nitrogen using Cu/Fe bimetal combined with sodium sulfite. Ind. Eng. Chem. Res. 2019;58:5175–5185. doi: 10.1021/acs.iecr.8b05721. DOI

Zhang F., Miao S., Yang Y., Zhang X., Chen J., Guan N. Size-dependent hydrogenation selectivity of nitrate on Pd− Cu/TiO2 catalysts. J. Phys. Chem. C. 2008;112:7665–7671. doi: 10.1021/jp800060g. DOI

Dong C., Lian C., Hu S., Deng Z., Gong J., Li M., Liu H., Xing M., Zhang J. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018;9:1252. doi: 10.1038/s41467-018-03666-2. PubMed DOI PMC

Lundwall M.J., McClure S.M., Goodman D.W. Probing terrace and step sites on Pt nanoparticles using CO and ethylene. J. Phys. Chem. C. 2010;114:7904–7912. doi: 10.1021/jp9119292. DOI

Deganello F., Liotta L., Macaluso A., Venezia A. Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd–Cu catalysts. Appl. Catal. B Environ. 2000;24:265–273. doi: 10.1016/S0926-3373(99)00109-5. DOI

Pizarro A., Molina C., Rodriguez J., Epron F. Catalytic reduction of nitrate and nitrite with mono- and bimetallic catalysts supported on pillared clays. J. Environ. Chem. Eng. 2015;3:2777–2785. doi: 10.1016/j.jece.2015.09.026. DOI

State R., Scurtu M., Miyazaki A., Papa F., Atkinson I., Munteanu C., Balint I. Influence of metal-support interaction on nitrate hydrogenation over Rh and Rh-Cu nanoparticles dispersed on Al2O3 and TiO2 supports. Arab. J. Chem. 2017;10:975–984. doi: 10.1016/j.arabjc.2017.05.009. DOI

Huo X., Van Hoomissen D.J., Liu J., Vyas S., Strathmann T.J. Hydrogenation of aqueous nitrate and nitrite with ruthenium catalysts. Appl. Catal. B Environ. 2017;211:188–198. doi: 10.1016/j.apcatb.2017.04.045. DOI

Epron F., Gauthard F., Barbier J. Catalytic reduction of nitrate in water on a monometallic Pd/CeO2 catalyst. J. Catal. 2002;206:363–367. doi: 10.1006/jcat.2001.3498. DOI

Miyazaki A., Matsuda K., Papa F., Scurtu M., Negrila C., Dobrescu G., Balint I. Impact of particle size and metal–support interaction on denitration behavior of well-defined Pt–Cu nanoparticles. Catal. Sci. Technol. 2015;5:492–503. doi: 10.1039/C4CY00929K. DOI

Seraj S., Kunal P., Li H., Henkelman G., Humphrey S.M., Werth C.J. PdAu alloy nanoparticle catalysts: Effective candidates for nitrite reduction in water. ACS Catal. 2017;7:3268–3276. doi: 10.1021/acscatal.6b03647. DOI

Kuhn J.N., Tsung C.-K., Huang W., Somorjai G.A. Effect of organic capping layers over monodisperse platinum nanoparticles upon activity for ethylene hydrogenation and carbon monoxide oxidation. J. Catal. 2009;265:209–215. doi: 10.1016/j.jcat.2009.05.001. DOI

Sastry M., Patil V., Mayya K., Paranjape D., Singh P., Sainkar S. Organization of polymer-capped platinum colloidal particles at the air–water interface. Thin Solid Film. 1998;324:239–244. doi: 10.1016/S0040-6090(97)01052-3. DOI

Wang D., Zhu Y. An effective Pt-Cu/SiO2 catalyst for the selective hydrogenation of cinnamaldehyde. J. Chem. 2018;2018:5608243. doi: 10.1155/2018/5608243. DOI

Motin A., Haunold T., Bukhtiyarov A.V., Bera A., Rameshan C., Rupprechter G. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies. Appl. Surf. Sci. 2018;440:680–687. doi: 10.1016/j.apsusc.2018.01.148. DOI

Koczkur K.M., Mourdikoudis S., Polavarapu L., Skrabalak S.E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015;44:17883–17905. doi: 10.1039/C5DT02964C. PubMed DOI

Umegaki T., Yan J.-M., Zhang X.-B., Shioyama H., Kuriyama N., Xu Q. Preparation and catalysis of poly(N-vinyl-2-pyrrolidone) (PVP) stabilized nickel catalyst for hydrolytic dehydrogenation of ammonia borane. Int. J. Hydrogen Energy. 2009;34:3816–3822. doi: 10.1016/j.ijhydene.2009.03.003. DOI

Safo I.A., Dosche C., Oezaslan M. Effects of capping agents on the oxygen reduction reaction activity and shape stability of Pt nanocubes. ChemPhysChem. 2019;20:3010–3023. doi: 10.1002/cphc.201900653. PubMed DOI PMC

Xian J., Hua Q., Jiang Z., Ma Y., Huang W. Size-dependent interaction of the poly (N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals. Langmuir. 2012;28:6736–6741. doi: 10.1021/la300786w. PubMed DOI

Qiu L., Liu F., Zhao L., Yang W., Yao J. Evidence of a unique electron donor− acceptor property for platinum nanoparticles as studied by XPS. Langmuir. 2006;22:4480–4482. doi: 10.1021/la053071q. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...