Live birth achieved despite the absence of ejaculated spermatozoa and mature oocytes retrieved: a case report
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články
PubMed
33474690
PubMed Central
PMC8079486
DOI
10.1007/s10815-021-02070-y
PII: 10.1007/s10815-021-02070-y
Knihovny.cz E-zdroje
- Klíčová slova
- IVF add-ons, Oocyte maturity, Polarized light microscopy, Testicular sperm, Theophylline,
- MeSH
- azoospermie epidemiologie terapie MeSH
- ejakulace fyziologie MeSH
- fertilizace in vitro trendy MeSH
- indukce ovulace MeSH
- intracytoplazmatické injekce spermie MeSH
- kryoprezervace * MeSH
- lidé MeSH
- motilita spermií genetika MeSH
- narození živého dítěte epidemiologie MeSH
- oocyty růst a vývoj MeSH
- oogeneze genetika MeSH
- spermie patologie transplantace MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
The most common reason for in vitro fertilization (IVF) cycle cancelation is a lack of quality gametes available for intracytoplasmic sperm injection (ICSI). Here we present the successful fertility treatment of the couple affected by obstructive azoospermia combined with suboptimal response to controlled ovarian stimulation. Since the conventional approach appeared ineffective to overcome both partners' specific problems, the targeted interventions, namely, (1) pharmacological enhancement of sperm motility and (2) polarized light microscopy (PLM)-guided optimization of ICSI time, were applied to rescue the cycle with only immature oocytes and immotile testicular sperm retrieved. The treatment with theophylline aided the selection of viable spermatozoa derived from cryopreserved testicular tissue. When the traditional stimulation protocol failed to produce mature eggs, non-invasive spindle imaging was employed to adjust the sperm injection time to the maturational stage of oocytes extruding a polar body in vitro. The fertilization of 12 late-maturing oocytes yielded 5 zygotes, which all developed into blastocysts. One embryo was transferred into the uterus on day 5 post-fertilization, and another 3 good quality blastocysts were vitrified for later use. The pregnancy resulted in a full-term delivery of a healthy child. This case demonstrates that the individualization beyond the standard IVF protocols should be considered to maximize the chance of poor-prognosis patients to achieve pregnancy with their own gametes.
Zobrazit více v PubMed
Oudendijk JF, Yarde F, Eijkemans MJ, Broekmans FJ, Broer SL. The poor responder in IVF: is the prognosis always poor?: a systematic review. Hum Reprod Update. 2012;18:1–11. doi: 10.1093/humupd/dmr037. PubMed DOI
Rustamov O, Wilkinson J, La Marca A, Fitzgerald C, Roberts SA. How much variation in oocyte yield after controlled ovarian stimulation can be explained? A multilevel modelling study. Hum Reprod Open. 2017;2017:hox018. doi: 10.1093/hropen/hox018. PubMed DOI PMC
Combelles CM, Cekleniak NA, Racowsky C, Albertini DF. Assessment of nuclear and cytoplasmic maturation in in-vitro matured human oocytes. Hum Reprod. 2002;17:1006–1016. doi: 10.1093/humrep/17.4.1006. PubMed DOI
Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, Novara PV, Fadini R. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015;21:427–454. doi: 10.1093/humupd/dmv011. PubMed DOI
Ko DS, Lee SH, Park DW, Yang KM, Lim CK. Pregnancy and fertilization potential of immature oocytes retrieved in intracytoplasmic sperm injection cycles. Clin Exp Reprod Med. 2015;42:118–125. doi: 10.5653/cerm.2015.42.3.118. PubMed DOI PMC
Vellez LT, Brogliato C, Berton CZ, Yoshida IH, Barbosa CP, Cordts EB. ICSI in late matured oocytes, is it worth it? Study with laboratory, clinical and genetic evaluation results. JBRA Assist Reprod. 2020;24:173–174. PubMed PMC
Piqueras P, Gallardo M, Hebles M, Jiménez JM, Migueles B, Montero L, Sánchez-Martín F, Sánchez-Martín P. Live birth after replacement of an embryo obtained from a spontaneously in vitro matured metaphase-I oocyte. Syst Biol Reprod Med. 2017;63:209–211. doi: 10.1080/19396368.2017.1285371. PubMed DOI
Shu Y, Gebhardt J, Watt J, Lyon J, Dasig D, Behr B. Fertilization, embryo development, and clinical outcome of immature oocytes from stimulated intracytoplasmic sperm injection cycles. Fertil Steril. 2007;87:1022–1027. doi: 10.1016/j.fertnstert.2006.08.110. PubMed DOI
De Vos A, Van de Velde H, Joris H, Van Steirteghem A. In-vitro matured metaphase-I oocytes have a lower fertilization rate but similar embryo quality as mature metaphase-II oocytes after intracytoplasmic sperm injection. Hum Reprod. 1999;14:1859–1863. doi: 10.1093/humrep/14.7.1859. PubMed DOI
Sachdev NM, Grifo JA, Licciardi F. Delayed intracytoplasmic sperm injection (ICSI) with trophectoderm biopsy and preimplantation genetic screening (PGS) show increased aneuploidy rates but can lead to live births with single thawed euploid embryo transfer (STEET) J Assist Reprod Genet. 2016;33:1501–1505. doi: 10.1007/s10815-016-0743-z. PubMed DOI PMC
Montag M, Schimming T, van der Ven H. Spindle imaging in human oocytes: the impact of the meiotic cell cycle. Reprod BioMed Online. 2006;12:442–446. doi: 10.1016/S1472-6483(10)61996-7. PubMed DOI
Hyun CS, Cha JH, Son WY, Yoon SH, Kim KA, Lim JH. Optimal ICSI timing after the first polar body extrusion in in vitro matured human oocytes. Hum Reprod. 2007;22:1991–1995. doi: 10.1093/humrep/dem124. PubMed DOI
Yu Y, Yan J, Liu ZC, Yan LY, Li M, Zhou Q, et al. Optimal timing of oocyte maturation and its relationship with the spindle assembly and developmental competence of in vitro matured human oocytes. Fertil Steril. 2011;96:73–8.e1. doi: 10.1016/j.fertnstert.2011.04.077. PubMed DOI
Holubcová Z, Kyjovská D, Martonová M, Páralová D, Klenková T, Otevřel P, Štěpánová R, Kloudová S, Hampl A. Egg maturity assessment prior to ICSI prevents premature fertilization of late-maturing oocytes. J Assist Reprod Genet. 2019;36:445–452. doi: 10.1007/s10815-018-1393-0. PubMed DOI PMC
Montag M, Köster M, van der Ven K, van der Ven H. Gamete competence assessment by polarizing optics in assisted reproduction. Hum Reprod Update. 2011;17:654–666. doi: 10.1093/humupd/dmr016. PubMed DOI
Schlegel PN. Nonobstructive azoospermia: a revolutionary surgical approach and results. Semin Reprod Med. 2009;27:165–170. doi: 10.1055/s-0029-1202305. PubMed DOI
Verheyen G, Popovic-Todorovic B, Tournaye H. Processing and selection of surgically-retrieved sperm for ICSI: a review. Basic Clin Androl. 2017;27:6. doi: 10.1186/s12610-017-0050-2. PubMed DOI PMC
Nordhoff V. How to select immotile but viable spermatozoa on the day of intracytoplasmic sperm injection? An embryologist’s view. Andrology. 2015;3:156–162. doi: 10.1111/andr.286. PubMed DOI
Tardif S, Madamidola OA, Brown SG, Frame L, Lefièvre L, Wyatt PG, Barratt CLR, Martins da Silva SJ. Clinically relevant enhancement of human sperm motility using compounds with reported phosphodiesterase inhibitor activity. Hum Reprod. 2014;29:2123–2135. doi: 10.1093/humrep/deu196. PubMed DOI PMC
Kovacic B, Vlaisavljevic V, Reljic M. Clinical use of pentoxifylline for activation of immotile testicular sperm before ICSI in patients with azoospermia. J Androl. 2006;27:45–52. doi: 10.2164/jandrol.05079. PubMed DOI
Amer M, Metawae B, Hosny H, Raef A. Beneficial effect of adding pentoxifylline to processed semen samples on ICSI outcome in infertile males with mild and moderate asthenozoospermia: a randomized controlled prospective crossover study. Iran J Reprod Med. 2013;11:939–944. PubMed PMC
Terriou P, Hans E, Cortvrindt R, Avon C, Charles O, Salzmann J, Lazdunski P, Giorgetti C. Papaverine as a replacement for pentoxifylline to select thawed testicular or epididymal spermatozoa before ICSI. Gynecol Obstet Fertil. 2015;43:786–790. doi: 10.1016/j.gyobfe.2015.10.007. PubMed DOI
Ebner T, Tews G, Mayer RB, Ziehr S, Arzt W, Costamoling W, Shebl O. Pharmacological stimulation of sperm motility in frozen and thawed testicular sperm using the dimethylxanthine theophylline. Fertil Steril. 2011;96:1331–1336. doi: 10.1016/j.fertnstert.2011.08.041. PubMed DOI
Ebner T, Shebl O, Mayer RB, Moser M, Costamoling W, Oppelt P. Healthy live birth using theophylline in a case of retrograde ejaculation and absolute asthenozoospermia. Fertil Steril. 2014;101:340–343. doi: 10.1016/j.fertnstert.2013.10.006. PubMed DOI
Ebner T, Maurer M, Oppelt P, Mayer RB, Duba HC, Costamoling W, Shebl O. Healthy twin live-birth after ionophore treatment in a case of theophylline-resistant Kartagener syndrome. J Assist Reprod Genet. 2015;32:873–877. doi: 10.1007/s10815-015-0486-2. PubMed DOI PMC
Wöber M, Ebner T, Steiner SL, Strohmer H, Oppelt P, Plas E, Obruca A. A new method to process testicular sperm: combining enzymatic digestion, accumulation of spermatozoa, and stimulation of motility. Arch Gynecol Obstet. 2015;291:689–694. doi: 10.1007/s00404-014-3458-3. PubMed DOI
Sandi-Monroy NL, Musanovic S, Zhu D, Szabó Z, Vogl A, Reeka N, Eibner K, Bundschu K, Gagsteiger F. Use of dimethylxanthine theophylline (SpermMobil) Arch Gynecol Obstet. 2019;300:1435–1443. doi: 10.1007/s00404-019-05312-8. PubMed DOI
Holubcová Z, Kyjovská D, Martonová M, Páralová D, Klenková T, Kloudová S. Human egg maturity assessment and its clinical application. J Vis Exp. 2019;150:e60058. 10.3791/60058. PubMed
Harper J, Jackson E, Sermon K, Aitken RJ, Harbottle S, Mocanu E, Hardarson T, Mathur R, Viville S, Vail A, Lundin K. Adjuncts in the IVF laboratory: where is the evidence for ‘add-on’ interventions? Hum Reprod. 2017;32:485–491. doi: 10.1093/humrep/dex004. PubMed DOI
HFEA. Treatment add ons. [online] 2020 [ref. 2020-12-15] available on https://www.hfea.gov.uk/treatments/explore-all-treatments/treatment-add-ons/. Accessed 15 Dec 2020
Macklon NS, Ahuja KK, Fauser B. Building an evidence base for IVF ‘add-ons’. Reprod BioMed Online. 2019;38:853–856. doi: 10.1016/j.rbmo.2019.04.005. PubMed DOI
Ortega C, Verheyen G, Raick D, Camus M, Devroey P, Tournaye H. Absolute asthenozoospermia and ICSI: what are the options? Hum Reprod Update. 2011;17:684–692. doi: 10.1093/humupd/dmr018. PubMed DOI
Silber S, Escudero T, Lenahan K, Abdelhadi I, Kilani Z, Munné S. Chromosomal abnormalities in embryos derived from testicular sperm extraction. Fertil Steril. 2003;79:30–38. doi: 10.1016/S0015-0282(02)04407-2. PubMed DOI
Tarozzi N, Nadalini M, Lagalla C, Coticchio G, Zacà C, Borini A. Male factor infertility impacts the rate of mosaic blastocysts in cycles of preimplantation genetic testing for aneuploidy. J Assist Reprod Genet. 2019;36:2047–2055. doi: 10.1007/s10815-019-01584-w. PubMed DOI PMC
Kahraman S, Sahin Y, Yelke H, Kumtepe Y, Tufekci MA, Yapan CC, Yesil M, Cetinkaya M. High rates of aneuploidy, mosaicism and abnormal morphokinetic development in cases with low sperm concentration. J Assist Reprod Genet. 2020;37:629–640. doi: 10.1007/s10815-019-01673-w. PubMed DOI PMC
Caamaño JN, Muñoz M, Diez C, Gómez E. Polarized light microscopy in mammalian oocytes. Reprod Domest Anim. 2010;45(Suppl 2):49–56. doi: 10.1111/j.1439-0531.2010.01621.x. PubMed DOI
Wang WH, Keefe DL. Prediction of chromosome misalignment among in vitro matured human oocytes by spindle imaging with the PolScope. Fertil Steril. 2002;78:1077–1081. doi: 10.1016/S0015-0282(02)04196-1. PubMed DOI
Casarini L, Santi D, Marino M. Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success. Reproduction. 2015;150:R175–R184. doi: 10.1530/REP-15-0251. PubMed DOI
Diamanti-Kandarakis E. Polycystic ovarian syndrome: pathophysiology, molecular aspects and clinical implications. Expert Rev Mol Med. 2008;10:e3. doi: 10.1017/S1462399408000598. PubMed DOI
Johansson HKL, Damdimopoulou P, van Duursen MBM, Boberg J, Franssen D, de Cock M, Jääger K, Wagner M, Velthut-Meikas A, Xie Y, Connolly L, Lelandais P, Mazaud-Guittot S, Salumets A, Draskau MK, Filis P, Fowler PA, Christiansen S, Parent AS, Svingen T. Putative adverse outcome pathways for female reproductive disorders to improve testing and regulation of chemicals. Arch Toxicol. 2020;94:3359–3379. doi: 10.1007/s00204-020-02834-y. PubMed DOI PMC