The Arabidopsis condensin CAP-D subunits arrange interphase chromatin
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33475158
DOI
10.1111/nph.17221
Knihovny.cz E-resources
- Keywords
- Arabidopsis thaliana, SMC proteins, chromatin organization, chromosomes, condensin, interphase nuclei,
- MeSH
- Adenosine Triphosphatases genetics MeSH
- Arabidopsis * genetics MeSH
- Chromatin * MeSH
- DNA-Binding Proteins MeSH
- Interphase MeSH
- Multiprotein Complexes MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphatases MeSH
- Chromatin * MeSH
- condensin complexes MeSH Browser
- DNA-Binding Proteins MeSH
- Multiprotein Complexes MeSH
Condensins are best known for their role in shaping chromosomes. Other functions such as organizing interphase chromatin and transcriptional control have been reported in yeasts and animals, but little is known about their function in plants. To elucidate the specific composition of condensin complexes and the expression of CAP-D2 (condensin I) and CAP-D3 (condensin II), we performed biochemical analyses in Arabidopsis. The role of CAP-D3 in interphase chromatin organization and function was evaluated using cytogenetic and transcriptome analysis in cap-d3 T-DNA insertion mutants. CAP-D2 and CAP-D3 are highly expressed in mitotically active tissues. In silico and pull-down experiments indicate that both CAP-D proteins interact with the other condensin I and II subunits. In cap-d3 mutants, an association of heterochromatic sequences occurs, but the nuclear size and the general histone and DNA methylation patterns remain unchanged. Also, CAP-D3 influences the expression of genes affecting the response to water, chemicals, and stress. The expression and composition of the condensin complexes in Arabidopsis are similar to those in other higher eukaryotes. We propose a model for the CAP-D3 function during interphase in which CAP-D3 localizes in euchromatin loops to stiffen them and consequently separates centromeric regions and 45S rDNA repeats.
See more in PubMed
Afgan E, Baker D, Batut B, Van Den Beek M, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Grüning BA et al. 2018. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Research 46: W537-W544.
Anders S, Pyl PT, Huber W. 2015. HTSeq - a Python frame work to work with high-throughtput sequencing data. Bioinformatics 31: 166-169.
Andrey P, Kieu K, Kress C, Lehmann G, Tirichine L, Liu ZC, Biot E, Adenot PG, Hue-Beauvais C, Houba-Herin N et al. 2010. Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Computational Biology 6: e1000853.
Antosz W, Pfab A, Ehrnsberger HF, Holzinger P, Kollen K, Mortensen SA, Bruckmann A, Schubert T, Langst G, Griesenbeck J et al. 2017. The composition of the Arabidopsis RNA polymerase II transcript elongation complex reveals the interplay between elongation and mRNA processing factors. The Plant Cell 29: 854-870.
Bauer CR, Hartl TA, Bosco G. 2012. Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes. PLoS Genetics 8: e1002873.
Berr A, Schubert I. 2007. Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division. Genetics 176: 853-863.
Biggs R, Liu PZ, Stephens AD, Marko JF. 2019. Effects of altering histone posttranslational modifications on mitotic chromosome structure and mechanics. Molecular Biology of the Cell 30: 820-827.
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.
Buster DW, Daniel SG, Nguyen HQ, Windler SL, Skwarek LC, Peterson M, Roberts M, Meserve JH, Hartl T, Klebba JE et al. 2013. SCFSlimb ubiquitin ligase suppresses condensin II-mediated nuclear reorganization by degrading Cap-H2. Journal of Cell Biology 201: 49-63.
Campell BR, Song Y, Posch TE, Cullis CA, Town CD. 1992. Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana. Gene 112: 225-228.
Chalut KJ, Hopfler M, Lautenschlager F, Boyde L, Chan CJ, Ekpenyong A, Martinez-Arias A, Guck J. 2012. Chromatin decondensation and nuclear softening accompany Nanog downregulation in embryonic stem cells. Biophysical Journal 103: 2060-2070.
Clough SJ, Bent AF. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16: 735-743.
Cobbe N, Heck MMS. 2004. The evolution of SMC proteins: phylogenetic analysis and structural implications. Molecular Biology and Evolution 21: 332-347.
D'Ambrosio C, Schmidt CK, Katou Y, Kelly G, Itoh T, Shirahige K, Uhlmann F. 2008. Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes and Development, 22: 2215-2227.
De Nooijer S, Wellink J, Mulder B, Bisseling T 2009. Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei. Nucleic Acids Research 37: 3558-3568.
Dowen JM, Bilodeau S, Orlando DA, Hübner MR, Abraham BJ, Spector DL, Young RA. 2013. Multiple structural maintenance of chromosome complexes at transcriptional regulatory elements. Stem Cell Reports 1: 371-378.
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. 2010. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research 38: W64-W70.
Dürr J, Lolas IB, Sørensen BB, Schubert V, Houben A, Melzer M, Deutzmann R, Grasser M, Grasser KD. 2014. The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis. Nucleic Acids Research 42: 4332-4347.
Elbatsh AMO, Kim E, Eeftens JM, Raaijmakers JA, van der Weide RH, Garcia-Nieto A, Bravo S, Ganji M, Uit de Bos J, Teunissen H et al. 2019. Distinct roles for condensin's two ATPase sites in chromosome condensation. Molecular Cell 76: 1-14.
Fang Y, Spector DL. 2005. Centromere positioning and dynamics in living Arabidopsis plants. Molecular Biology of the Cell 16: 5710-5718.
Fazzio TG, Panning B. 2010. Condensin complexes regulate mitotic progression and interphase chromatin structure in embryonic stem cells. Journal of Cell Biology 188: 491-503.
Fransz P, de Jong JH, Lysak M, Castiglione MR, Schubert I. 2002. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proceedings of the National Academy of Sciences, USA 99: 14584-14589.
Freeman L, Aragon-Alcaide L, Strunnikov A. 2000. The condensin complex governs chromosome condensation and mitotic transmission of rDNA. Journal of Cell Biology 149: 811-824.
Fuchs J, Demidov D, Houben A, Schubert I. 2006. Chromosomal histone modification patterns - from conservation to diversity. Trends in Plant Science 11: 199-208.
Fujimoto S, Yonemura M, Matsunaga S, Nakagawa T, Uchiyama S, Fukui K. 2005. Characterization and dynamic analysis of Arabidopsis condensin subunits, AtCAP-H and AtCAP-H2. Planta 222: 293-300.
Gerlich D, Hirota T, Koch B, Peters JM, Ellenberg J. 2006. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Current Biology 16: 333-344.
Ghavi-Helm Y, Jankowski A, Meiers S, Viales R, Korbel JO, Furlong EM. 2019. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nature Genetics 51: 1272-1282.
Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, Kanemaki MT, Xie L, Paulson JR, PEarnshaw WC et al. 2018. A pathway for mitotic chromosome formation. Science 359: 652.
Green LC, Kalitsis P, Chang TM, Cipetic M, Kim JH, Marshall O, Turnbull L, Whitchurch CB, Vagnarelli P, Samejima K et al. 2012. Contrasting roles of condensin I and condensin II in mitotic chromosome formation. Journal of Cell Science 125: 1591-1604.
Haase K, Macadangdang JK, Edrington CH, Cuerrier CM, Hadjiantoniou S, Harden JL, Skerjanc IS, Pelling AE. 2016. Extracellular forces cause the nucleus to deform in a highly controlled anisotropic manner. Scientific Reports 6: 21300.
Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR. 2008. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes & Development 22: 2204-2214.
Hartl TA, Sweeney SJ, Knepler PJ, Bosco G. 2008. Condensin II resolves chromosomal associations to enable anaphase I segregation in Drosophila male meiosis. PLoS Genetics 4: 18-22.
Heckmann S, Lermontova I, Berckmans B, de Veylder L, Bäumlein H, Schubert I. 2011. The E2F transcription factor family regulates CENH3 expression in Arabidopsis thaliana. The Plant Journal 68: 646-656.
Herzog S, Jaiswal SN, Urban E, Riemer A, Fischer S, Heidmann SK. 2013. Functional dissection of the Drosophila melanogaster condensin subunit Cap-G reveals its exclusive association with condensin I. PLoS Genetics 9: e1003463.
Hirano T. 2012a. Condensins: universal organizers of chromosomes with diverse functions. Genes & Development 26: 1659-1678.
Hirano T. 2012b. Chromosome territories meet a condensin. PLoS Genetics 8: e1002939.
Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM. 2004. Distinct functions of condensin I and II in mitotic chromosome assembly. Journal of Cell Science 117: 6435-6445.
Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC. 2003. Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Developmental Cell 5: 323-336.
Jacob Y, Feng S, LeBlanc CA, Bernatavichute YV, Stroud H, Cokus S, Johnson LM, Pellegrini M, Jacobsen SE, Michaels SD. 2009. ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nature Structural & Molecular Biology 16: 763-768.
Jasencakova Z, Soppe WJJ, Meister A, Gernand D, Turner BM, Schubert I. 2003. Histone modifications in Arabidopsis - High methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. The Plant Journal 33: 471-480.
Jefferson RA, Kavanagh TA, Bevan MW. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6: 3901-3907.
Jeppsson K, Kanno T, Shirahige K, Sjögren C. 2014. The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nature Reviews Molecular Cell Biology 15: 601-614.
Jost KL, Bertulat B, Cardoso MC. 2012. Heterochromatin and gene positioning: inside, outside, any side? Chromosoma 121: 555-563.
Kagami Y, Ono M, Yoshida K. 2017. Plk1 phosphorylation of CAP-H2 triggers chromosome condensation by condensin II at the early phase of mitosis. Scientific Reports 7: 5583.
Kikuchi S, Kishii M, Shimizu M, Tsujimoto H. 2005. Centromere-specific repetitive sequences from Torenia, a model plant for interspecific fertilization, and whole-mount FISH of its interspecific hybrid embryos. Cytogenetics and Genome Research 109: 228-235.
Krause M, Te Riet J, Wolf K. 2013. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy. Physical Biology 10: 065002.
Kudo T, Sasaki Y, Terashima S, Matsuda-Imai N, Takano T, Saito M, Kanno M, Ozaki S, Suwabe K, Suzuki G et al. 2016. Identification of reference genes for quantitative expression analysis using large-scale RNA-seq data of Arabidopsis thaliana and model crop plants. Genes & Genetic Systems 91: 111-125.
Layat E, Sáez-Vásquez J, Tourmente S. 2012. Regulation of pol I-transcribed 45S rDNA and pol III-transcribed 5S rDNA in Arabidopsis. Plant and Cell Physiology 53: 267-276.
Lermontova I, Rutten T, Schubert I. 2011. Deposition, turnover, and release of CENH3 at Arabidopsis centromeres. Chromosoma 120: 633-640.
Liu CM, McElver J, Tzafrir I, Joosen R, Wittich P, Patton D, van Lammeren AAM, Meinke D. 2002. Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype. The Plant Journal 29: 405-415.
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408.
Longworth MS, Herr A, Ji JY, Dyson NJ. 2008. RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3. Genes & Development 22: 1011-1024.
Longworth MS, Walker JA, Anderssen E, Moon NS, Gladden A, Heck MMS, Ramaswamy S, Dyson NJ. 2012. A shared role for RBF1 and dCAP-D3 in the regulation of transcription with consequences for innate immunity. PLoS Genetics 8: e1002618.
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15: 550.
Maeshima K, Laemmli UK. 2003. A two-step scaffolding model for mitotic chromosome assembly. Developmental Cell 4: 467-480.
Maeshima K, Tamura S, Shimamoto Y. 2018. Chromatin as a nuclear spring. Biophysics and Physicobiology 15: 189-195.
Marenduzzo D, Finan K, Cook PR. 2006. The depletion attraction: An underappreciated force driving cellular organization. Journal of Cell Biology 175: 681-686.
Martinez-Zapater JM, Estelle MA, Somerville CR. 1986. A highly repeated DNA sequence in Arabidopsis thaliana. Molecular Genetics and Genomics 204: 417-423.
Moissiard G, Cokus SJ, Cary J, Feng S, Billi AC, Stroud H, Husmann D, Zhan Y, Lajoie BR, McCord RP et al. 2012. MORC family ATPases required for heterochromatin condensation and gene silencing. Science 336: 1448-1451.
Nakamura S, Mano S, Tanaka Y, Ohnishi M, Nakamori C, Araki M, Niwa T, Nishimura M, Kaminaka H, Nakagawa T et al. 2010. Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Bioscience, Biotechnology, and Biochemistry 74: 1315-1319.
Nasmyth K, Haering C. 2005. The structure and function of SMC and kleisin complexes. Annual Review of Biochemistry 74: 595-648.
Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K, Hause G, Aurich AC, Dorn R, Jenuwein T et al. 2005. Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO Journal 24: 1418-1429.
Onn I, Aono N, Hirano M, Hirano T. 2007. Reconstitution and subunit geometry of human condensin complexes. EMBO Journal 26: 1024-1034.
Ono T, Fang Y, Spector DL, Hirano T. 2004. Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Molecular Biology of the Cell 15: 3296-3308.
Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T. 2003. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115: 109-121.
Parra G, Bradnam K, Rose AB, Korf I. 2011. Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic Acids Research 39: 5328-5337.
Pecinka A, Schubert V, Meister A, Kreth G, Klatte M, Lysak MA, Fuchs J, Schubert I. 2004. Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113: 258-269.
Poulet A, Duc C, Voisin M, Desset S, Tutois S, Vanrobays E, Benoit M, Evans DE, Probst AV, Tatout C. 2017. The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants. Journal of Cell Science 130: 590-601.
Probst AV, Fransz PF, Paszkowski J, Mittelsten SO. 2003. Two means of transcriptional reactivation within heterochromatin. The Plant Journal 33: 743-749.
Rose AB, Elfersi T, Parra G, Korf I. 2008. Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. The Plant Cell 20: 543-551.
Rosin LF, Nguyen SC, Joyce EF. 2018. Condensin II drives large-scale folding and spatial partitioning of interphase chromosomes in Drosophila nuclei. PLoS Genetics 14: e1007393.
Sakamoto T, Inui YT, Uraguchi S, Yoshizumi T, Matsunaga S, Mastui M, Umeda M, Fukui K, Fujiwara T. 2011. Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. The Plant Cell 23: 3533-3546.
Sakamoto T, Sugiyama T, Yamashita T, Matsunaga S. 2019. Plant condensin II is required for the correct spatial relationship between centromeres and rDNA arrays. Nucleus 10: 116-125.
Sakamoto Y, Takagi S. 2013. LITTLE NUCLEI 1 and 4 regulate nuclear morphology in Arabidopsis thaliana. Plant and Cell Physiology. 54: 622-633.
Savvidou E, Cobbe N, Steffensen S, Cotterill S, Heck MMS. 2005. Drosophila CAP-D2 is required for condensin complex stability and resolution of sister chromatids. Journal of Cell Science 118: 2529-2543.
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671-675.
Schubert V. 2009. SMC proteins and their multiple functions in higher plants. Cytogenetics and Genome Research 124: 202-214.
Schubert V, Berr A, Meister A. 2012. Interphase chromatin organisation in Arabidopsis nuclei: constraints versus randomness. Chromosoma 121: 369-387.
Schubert V, Klatte M, Pecinka A, Meister A, Jasencakova Z, Schubert I. 2006. Sister chromatids are often incompletely aligned in meristematic and endopolyploid interphase nuclei of Arabidopsis thaliana. Genetics 172: 467-475.
Schubert V, Lermontova I, Schubert I. 2013. The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility. Chromosoma 122: 517-533.
Shao Y, Lu N, Wu Z, Cai C, Wang S, Zhang L, Zhou F, Xiao S, Liu L, Zeng X et al. 2018. Creating a functional single-chromosome yeast. Nature 560: 331-335.
Siddiqui NU, Stronghill PE, Dengler RE, Hasenkampf A, Riggs CD. 2003. Mutations in Arabidopsis condensin genes disrupt embryogenesis, meristem organization and segregation of homologous chromosomes during meiosis. Development 130: 3283-3295.
Sieburth LE, Meyerowitz EM. 1997. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. The Plant Cell 9: 355-365.
Skibbens RV. 2019. Condensins and cohesins - one of these things is not like the other! Journal of Cell Science 132: jcs220491.
Smith SJ, Osman K, Franklin FCH. 2014. The condensin complexes play distinct roles to ensure normal chromosome morphogenesis during meiotic division in Arabidopsis. The Plant Journal 80: 255-268.
Soppe WJJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, Jacobsen SE, Schubert I, Fransz PF. 2002. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO Journal 21: 6549-6559.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P et al. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 47: D607-D613.
Tatout C, Evans DE, Vanrobays E, Probst AV, Graumann K. 2014. The plant LINC complex at the nuclear envelope. Chromosome Research 22: 241-252.
Tessadori F, Chupeau MC, Chupeau Y, Knip M, Germann S, van Driel R, Fransz P, Gaudin V. 2007. Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. Journal of Cell Science 120: 1200-1208.
Van Leene J, Eeckhout D, Cannoot B, De Winne N, Persiau G, Van De Slijke E, Vercruysse L, Dedecker M, Verkest A, Vandepoele K et al. 2015. An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. Nature Protocols 10: 169-187.
Van Ruiten MS, Rowland BD. 2018. SMC Complexes: universal DNA looping machines with distinct regulators. Trends in Genetics 34: 477-487.
Verlinden L, Eelen G, Beullens I, Van Camp M, Van Hummelen P, Engelen K, Van Hellemont R, Marchal K, De Moor B, Foijer F et al. 2005. Characterization of the condensin component Cnap1 and protein kinase melk as novel E2F target genes down-regulated by 1,25-dihydroxyvitamin D3. Journal of Biological Chemistry 280: 37319-37330.
Wallace HA, Bosco G. 2013. Condensins and 3D organization of the interphase nucleus. Current Genetic Medicine Reports 1: 219-229.
Wallace HA, Klebba JE, Kusch T, Rogers GC, Bosco G. 2015. Condensin II regulates interphase chromatin organization through the Mrg-binding motif of Cap-H2. G3: Genes, Genomes, Genetics 5: 803-817.
Walther N, Hossain MJ, Politi AZ, Koch B, Kueblbeck M, Odegard-Fougner O, Lampe M, Ellenberg J. 2018. A quantitative map of human condensins provides new insights into mitotic chromosome architecture. Journal of Cell Biology 217: 2309-2328.
Wang H, Dittmer TA, Richards EJ. 2013. Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biology 13: 200.
Wang J, Blevins T, Podicheti R, Haag JR, Tan EH, Wang F, Pikaard CS. 2017. Mutation of Arabidopsis SMC4 identifies condensin as a corepressor of pericentromeric transposons and conditionally expressed genes. Genes & Development 31: 1601-1614.
Wang Z, Cao H, Chen F, Liu Y. 2014. The roles of histone acetylation in seed performance and plant development. Plant Physiology and Biochemistry 84: 125-133.
Weisshart K, Fuchs J, Schubert V. 2016. Structured illumination microscopy (SIM) and photoactivated localization microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules on flow-sorted Arabidopsis nuclei. Bio-Protocol 6: e1725.
Wu TD, Nacu S. 2010. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26: 873-881.
Yelagandula R, Stroud H, Holec S, Zhou K, Feng S, Zhong X, Muthurajan UM, Nie X, Kawashima T, Groth M et al. 2014. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 158: 98-109.
Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E. 2011. AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Research 39: D1118-D1122.
Yuen KC, Slaughter BD, Gerton JL. 2017. Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters. Science Advances. 3: e1700191.
Zelkowski M, Zelkowska K, Conrad U, Hesse S, Lermontova I, Marzec M, Meister A, Houben A, Schubert V. 2019. Arabidopsis NSE4 proteins act in somatic nuclei and meiosis to ensure plant viability and fertility. Frontiers in Plant Science 10: 774.
Imaging plant cells and organs with light-sheet and super-resolution microscopy