Assessment of the papermaking potential of processed Miscanthus × giganteus stalks using alkaline pre-treatment and hydrodynamic cavitation for delignification
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33476967
PubMed Central
PMC7816010
DOI
10.1016/j.ultsonch.2021.105462
PII: S1350-4177(21)00003-1
Knihovny.cz E-zdroje
- Klíčová slova
- Agricultural residues, Chemical composition, Fiber characteristics, Non-wood pulp, Strength properties,
- MeSH
- hydrodynamika * MeSH
- koncentrace vodíkových iontů MeSH
- lignin chemie MeSH
- lipnicovité chemie MeSH
- papír * MeSH
- povrchové vlastnosti MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lignin MeSH
One way of satisfying increased market demand and simultaneously achieving a reduced environmental load in the industrial paper production is the use of fibrous agricultural residues. The aims of this study were i) to investigate the effect of alkaline - hydrodynamic cavitation (HC) pre-treatments on the delignification of Miscanthus × giganteus stalks (MGS) and ii) establishing the suitability of MGS as feedstock and their exploitation in pulp and paper manufacturing. It was demonstrated that the proposed treatment is an efficient delignification method for the non-wood fiber sources, such as miscanthus. A significant outcome of this work was the observation that HC treatment preserved the fibres lengths and surface quality of raw MGS, but at the same time increased the amount of kinked and curled fibers present in cavitated miscanthus fibers. The average miscanthus fiber length was found to be relatively short at 0.45 (±0.28) mm, while the slenderness ratio, the flexibility coefficient and Runkel ratio values were calculated to be 28.13, 38.16 and 1.62, respectively. The estimated physical properties of MGS pulp hand-sheets were 24.88 (±3.09) N m g-1 as the tensile index, 0.92 (±0.06) kPa m2 g-1 as the burst index and 4.0 (±0.37) mN m2 g-1 as the tear index. Overall the current work demonstrated effective use of hydrodynamic cavitation for improving the processing in pulp and paper manufacturing.
Chemical Engineering Department Institute of Chemical Technology Mumbai 400019 India
Innovation Center University of Sopron 4 Bajcsy Zs 9400 Sopron Hungary
Institute of Cellulose and Paper Technology Celltech paper Ltd 9400 Sopron Hungary
Zobrazit více v PubMed
Scarlat N., Dallemand J.-F., Monforti-Ferrario F., Nita V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015;15:3–34.
A. Thorenz, L. Wietschel, D. Stindt, A. Tuma, A., Assessment of agroforestry residue potentials for the bioeconomy in the European Union. J. Clean. Prod. 176 (2018) 348-359. PubMed PMC
Scarlat N., Martinov M., Dallemand J.-F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Manage. 2010;30:1889–1897. PubMed
CEPI – Confederation of European Paper Industries, Key Statistics Report 2017, www.cepi.org, 2018 (accessed 19 July 2018).
K. Saijonkari-Pahkala, Non-wood plants as raw material for pulp and paper, Academic Thesis, MTT Agrifood Research Finland, University of Helsinki, 2001.
İ. Deniz, H. Kirci, S. Ates, S., Optimisation of wheat straw Triticum drum kraft pulping, Ind. Crop Prod. 19 (2004) 237-243.
S. Singh, D. Dutt, C.H. Tyagi, Complete characterization of wheat straw (Triticum aestivum PBW-343 L. Emend. Fiori & Paol.) – a renewable source of fibers for pulp and papermaking, Bioresources 6 (2011) 154-177.
Nasser R.A., Hiziroglu S., Abdel-Aal M.A., Al-Mefarrej H.A., Shetta N.D., Aref I.M. Measurement of some properties of pulp and paper made from date palm midribs and wheat straw by soda-AQ pulping process. Measurement. 2015;62:179–186.
Rodríguez A., Moral A., Serrano L., Labidi J., Jiménez L. Rice straw pulp obtained by using various methods. Bioresour. Technol. 2008;99:2881–2886. PubMed
Kaur D., Bhardwaj N.K., Lohchab R.K. Prospects of rice straw as a raw material for paper making. Waste Manage. 2017;60:127–139. PubMed
Enayati A.A., Hamzeh Y., Mirshokraie S.A., Molaii M. Papermaking potential of canola stalks. Bioresources. 2009;4:245–256.
Hosseinpour R., Fatehi P., Latibari A.J., Ni Y., Sepiddehdam S.J. Canola straw chemimechanical pulping for pulp and paper production. Bioresour. Technol. 2010;101:4193–4197. PubMed
Mousavi S.M.M., Hosseini S.Z., Resalati H., Mandavi S., Garmaroody E.R. Papermaking potential of rapeseed straw, a new agricultural-based fiber source. J. Clean. Prod. 2013;52:420–424.
Tofanica B.M., Cappelletto E., Garvilescu D., Mueller K. Properties of rapeseed (Brassica napus) stalks fibers. J. Nat. Fibers. 2011;8:241–262.
Khristova P., Kordsachia O., Patt R., Karar I., Khider T. Environmentally friendly pulping and bleaching of bagasse. Ind. Crop Prod. 2006;23:131–139.
Rudi H., Resalati H., Eshkiki R.B., Kermanian H. Sunflower stalk neutral sulphite semichemical pulp: an alternative fiber source for production of fluting paper. J. Clean. Prod. 2016;127:562–566.
Sharma N., Godiyal R.D., Bhawana B.P., Thapliyal K. Anupam. Pulping and bleaching of hydro distillation waste of citronella grass (Cymbopogon winterianus Jowitt) for papermaking. Waste Biomass Valor. 2018;9:409–419.
Albert S., Padhiar A., Gandhi D. Fiber properties of Sorghum halepense and its suitability for paper production. J. Nat. Fibers. 2011;8:263–271.
Law K.N., Kokta B.V., Mao C.B. Fibre morphology and soda-sulphite pulping of switchgrass. Bioresour. Technol. 2001;77:1–7. PubMed
Cappelletto P., Mongardini F., Barberi B., Sannibale M., Brizzi M., Pignatelli V. Papermaking pulps from the fibrous fraction of Miscanthus x Giganteus. Ind. Crop. Prod. 2000;11:205–210.
Danielewicz D., Surma-Ślusarska B. Miscanthus × giganteus stalks as a potential non-wood raw material for the pulp and paper industry. Influence of pulping and beating conditions on the fibre and paper properties. Ind. Crop Prod. 2019;141
Marín F., Sanchez J.L., Arauzo J., Fuertes R., Gonzalo A. Semichemical pulping of Miscanthus giganteus. Effect of pulping conditions on some pulp and paper properties. Bioresour. Technol. 2009;100(17):3933–3940. PubMed
Ververis C., Georghiou K., Christodoulakis N., Santas P., Santas R. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crop Prod. 2004;19:245–254.
Villaverde J.J., Ligero P., de Vega A. Applicability of short totally chlorine free bleaching sequences to Miscanthus x giganteus organosolv pulps. Ind. Eng. Chem. 2011;50:9847–9851.
Lewandowski I., Clifton-Brown J.C., Scurlock J.M.O., Huisman W. Miscanthus: European experience with a novel energy crop. Biomass Bioenerg. 2000;19:209–227.
Brosse N., Dufour A., Meng X., Sun Q., Ragauskas A. Miscanthus: a fast-growing crop for biofuels and chemical production. Biofuels Bioprod. Bioref. 2012;6:580–598.
Witzel C.-P., Finger R. Economic evaluation of Miscanthus production – a review. Renew. Sustain. Energy Rev. 2016;53:681–696.
Smeets E.M.W., Lewandowski I.M., Faaij A.P.C. The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting. Renew. Sustain. Energy Rev. 2009;13:1230–1245.
Hilares R.T., Dionízio R.M., Muñoz S.S., Prado C.A., de Sousa Júnior R., da Silva S.S., Santos J.C. Hydrodynamic cavitation-assisted continuous pre-treatment of sugarcane bagasse for ethanol production: effects of geometric parameters of the cavitation device. Ultrason. Sonochem. 2020:104931. PubMed
Kim J.S., Lee Y.Y., Kim T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016;199:42–48. PubMed
Paixão S.M., Ladeira S.A., Silva T.P., Arez B.F., Roseiro J.C., Martins M.L.L., Alves L. Sugarcane bagasse delignification with potassium hydroxide for enhanced enzymatic hydrolysis. RSC Adv. 2016;6:1042–1052.
Rodrigues C.I.S., Jackson J.J., Montross M.D. A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions. Ind. Crop. Prod. 2016;92:165–173.
Sharma R., Palled V., Sharma-Shivappa R.R., Osborne J. Potential of potassium hydroxide pretreatment of switchgrass for fermentable sugar production. Appl. Biochem. Technol. 2013;169:761–772. PubMed
Kosel J., Šinkovec A., Dular M. A novel rotation generator of hydrodynamic cavitation for the fibrillation of long conifer fibers in paper production. Ultrason. Sonochem. 2019;59 PubMed
Badve M.P., Gogate P.R., Pandit A.B., Csóka L. Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing. Ultrason. Sonochem. 2014;21:162–167. PubMed
Baxi P.B., Pandit A.B. Using cavitation for delignification of wood. Bioresource Technol. 2012;110:697–700. PubMed
Kim I., Lee I., Jeon S.H., Hwang T., Han J.-I. Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed. Bioresource Technol. 2015;192:335–339. PubMed
Patil P.N., Gogate P.R., Csóka L., Dregelyi-Kiss A., Horvath M. Intensification of biogas production using pretreatment based on hydrodynamic cavitation. Ultrason. Sonochem. 2016;30:79–86. PubMed
Hilares R.T., de Almeida G.F., Ahmed M.A., Antunes F.A.F., da Silva S.S., Han J.-I., dos Santos J.C. Hydrodynamic cavitation as an efficient pretreatment method for lignocellulosic biomass: a parametric study. Bioresour. Technol. 2017;235:301–308. PubMed
Kosel J., Gutiérrez-Aguirre I., Rački N., Dreo T., Ravnikar M., Dular M. Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation. Water Res. 2017;124:465–471. PubMed
Kosel J., Šuštaršič M., Petkovšek M., Zupanc M., Sežun M., Dular M. Application of (super)cavitation fort he recycling of process waters in paper producing industry. Ultrason. Sonochem. 2020;64 PubMed
Šarc A., Kosel J., Stopar D., Oder M., Dular M. Removal of bacterial Legionella pneumophila, Escherichia coli and Bacillus subtilis by (super)cavitation. Ultrason. Sonochem. 2018;42:228–236. PubMed
Sežun M., Kosel J., Zupanc M., Hočevar M., Vrtovšek J., Petkovšek M., Dular M. Cavitation as a potential technology for wastewater management – an example of enhanced nutrient release from secondary pulp and paper mill sludge. J. Mech. Eng. 2019;65:641–649.
Ozonek J. Application of Hydrodynamic Cavitation in Environmental Engineering. CRC Press, Taylor and Francis Group; Boka Raton: 2012. Chapter 2 The physical basics of hydrodynamic cavitation; pp. 9–30.
Nakashima K., Ebi Y., Shibasaki-Kitakawa N., Soyama H., Yonemoto T. Hydrodynamic cavitation reactor for efficient pretreatment of lignocellulosic biomass. Ind. Eng. Chem. 2016;55:1866–1871.
TAPPI T275 sp-98, Screening of pulp (Somerville-type equipment), 1998.
ISO 5269-2, Pulps – Preparation of laboratory sheets for physical testing – Part 2: Rapid Köthen method, 2004.
ISO 1924-21, Paper and board – Determination of tensile properties – Part 2: Constant rate of elongation method (20 mm/min), 2008.
ISO 1974, Paper – Determination of tearing resistance – Elmendorf method, 2012.
ISO 2758, Paper – Determination of bursting strength, 2014.
Danielewicz D., Dybka-Stępień K., Surma-Ślusarska B. Processing of Miscanthus x giganteus stalks into various soda and kraft pulps. Part I: Chemical composition, types of cells and pulping effects. Cellulose. 2018;25:6731–6744.
TAPPI T212 om-02, One percent sodium hydroxide solubility of wood and pulp, 2002.
TAPPI T207 cm-08, Water solubility of wood and pulp, 2008.
TAPPI T211 om-02, Ash in wood, pulp, paper and paperboard: combustion at 525 °C, 2002.
TAPPI T222 om-02, Acid-insoluble lignin in wood and pulp, 2002.
Kürschner K., Hoffer A. Ein neues Verfahren zur bestimmung der cellulose in hölzern und zellstoffen, Technologie und Chemie der Papier – und Zellstoff –. Fabrikation. 1929;26:125–129.
Rowell R.M., Pettersen R., Tshabalala M.A. Cell Wall Chemistry. In: Rowell R.M., editor. Handbook of Wood Chemistry and Wood Composites. CRC Press; New York: 2012. pp. 33–74.
Ilvessalo-Pfäffli M.-S. Part 2 Nonwood Fibers. In: Timell T.E., editor. Fiber Atlas: Identification of papermaking fibers. Springer-Verlag; Berlin: 1995. pp. 267–289.
Gülsoy S.K., Şimşir S. Chemical composition, fiber morphology and kraft pulping of bracken stalks (Pteridium aquilinum (L.) Kuhn) Drvna Ind. 2018;69:23–33.
Saeed H.A.M., Liu Y., Lucia L.A., Chen H.L. Suitable approach using agricultural residues for pulp and paper manufacturing. Nor. Pulp Pap. Res. J. 2017;32:674–682.
C.I. Ogbonnaya, H. Roy-Macauley, M.C. Nwalozie, D.J.M. Annerose, Physical and histochemical properties of kenaf (Hibiscus cannabinus L.) grown under water deficit on sandy soil. Ind. Crop. Prod. 7(1997) 9-18.
de Vrije T., de Haas G.G., Tan G.B., Keijsers E.R.P., Claassen P.A.M. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int. J. Hydrogen Energy. 2002;27:1381–1390.
Kim S.J., Kim M.Y., Jeong S.J., Jang M.S., Chung I.M. Analysis of the biomass content of various Miscanthus genotypes for biofuel production in Korea. Ind. Crop. Prod. 2012;38:46–49.
Sørensen A., Teller P.J., Hilstrom T., Ahring B.K. Hydrolysis of Miscanthus for bioethanol production using dilute acid pre-soaking combined with wet explosion pretreatment and enzymatic treatment. Bioresour. Technol. 2008;99:6602–6607. PubMed
Vanderghem C., Brostaux Y., Jacquet N., Blecker C., Paquot M. Optimization of formic/acetic acid delignification of Miscanthus x giganteus for enzymatic hydrolysis using response surface methodology. Ind. Crop Prod. 2012;35:280–286.
Hodgson E.M., Nowakowski D.J., Shield I., Riche A., Bridgwater A.V., Clifton-Brown J.C., Donnison I.S. Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining fuels and chemicals. Bioresour. Technol. 2011;102:3411–3418. PubMed
Le Ngoc Huyen T., Rémond C., Dheilly R.M., Chabbert B. Effect of harvesting date on the composition and saccharification of Miscanthus x giganteus. Bioresour. Technol. 2010;101:8224–8231. PubMed
Schmidt A., Lemaigre S., Ruf T., Delfosse P., Emmerling C. Miscanthus as biogas feedstock: influence of harvest time and stand age on the biochemical methane potential (BMP) of two different growing seasons. Biomass Convers. Biorefin. 2018;8:245–254.
Waliszewska H., Zborowska M., Waliszewska B., Borysiak S., Antczak A., Czekała W. Transformation of Miscanthus and Sorghum cellulose during methane fermentation. Cellulose. 2018;25:1207–1216.
Hayes D.J.M. Mass and compositional changes, relevant to biorefining, in Miscanthus x giganteus plants over the harvest window. Bioresour. Technol. 2013;142:591–602. PubMed
P. Sutton, C. Joss, B. Crossely, Factors affecting fiber characteristics in pulp, in: Proceedings Pulping/process & product quality conference, Boston, MA, Tappi, Atlanta, GA, USA, 2000.
Li B., Bandekar R., Zha Q., Alsaggaf A., Ni Y. Fiber quality analysis: OpTest fiber quality analyser versous L&W Fiber Tester. Ind. Eng. Chem. 2011;50:12572–12578.
Joutsimo O., Wathén R., Tamminen T. Effects of fiber deformations on pulp sheet properties and fiber strength. Pap Puu-Pap Tim. 2005;87:392–397.
Kamoga O.L.M., Kirabira J.B., Byaruhanga J.K., Godiyal R.D., Anupam K. Characterisation and evaluation of pulp and paper from selected Ugandan grasses for paper industry. Cellul. Chem. Technol. 2016;50:275–284.
Ai J., Tschirner U. Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses. Bioresour. Technol. 2010;101:215–221. PubMed