Mobile and immobile boundaries in ferroelectric films
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-02-00938
Russian Foundation for Basic Research
SOLID21, CZ.02.1.01/0.0/0.0/16_019/0000760
Operational Program Research, Development and Education
SOLID21, CZ.02.1.01/0.0/0.0/16_019/0000760
Operational Program Research, Development and Education
SOLID21, CZ.02.1.01/0.0/0.0/16_019/0000760
Operational Program Research, Development and Education
2017SGR 1506
Generalitat de Catalunya
298409
Academy of Finland
19-09671S
Grantová Agentura České Republiky
PubMed
33479382
PubMed Central
PMC7820330
DOI
10.1038/s41598-021-81516-w
PII: 10.1038/s41598-021-81516-w
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The intrinsic mobile interfaces in ferroelectrics-the domain walls can drive and enhance diverse ferroelectric properties, essential for modern applications. Control over the motion of domain walls is of high practical importance. Here we analyse theoretically and show experimentally epitaxial ferroelectric films, where mobile domain walls coexist and interact with immobile growth-induced interfaces-columnar boundaries. Whereas these boundaries do not disturb the long-range crystal order, they affect the behaviour of domain walls in a peculiar selective manner. The columnar boundaries substantially modify the behaviour of non-ferroelastic domains walls, but have negligible impact on the ferroelastic ones. The results suggest that introduction of immobile boundaries into ferroelectric films is a viable method to modify domain structures and dynamic responses at nano-scale that may serve to functionalization of a broader range of ferroelectric films where columnar boundaries naturally appear as a result of the 3D growth.
CNRS Université de Bordeaux ICMCB UPR 9048 33600 Pessac France
CREAL SA Chemin du Paqueret 1A CH 1025 Saint Sulpice Switzerland
Institutut de Ciència de Materials de Barcelona ICMAB CSIC Campus UAB 08193 Bellaterra Spain
Microelectronics Research Unit University of Oulu P O Box 4500 90014 Oulu Finland
Zobrazit více v PubMed
Dawber M, Rabe K, Scott J. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 2005;77:1083. doi: 10.1103/RevModPhys.77.1083. DOI
Catalan G, Seidel J, Ramesh R, Scott JF. Domain wall nanoelectronics. Rev. Mod. Phys. 2012;84:119–156. doi: 10.1103/RevModPhys.84.119. DOI
McQuaid RG, Campbell MP, Whatmore RW, Kumar A, Gregg JM. Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite. Nat. Commun. 2017;8:1–7. doi: 10.1038/ncomms15105. PubMed DOI PMC
Cherifi-Hertel S, et al. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nat. Commun. 2017;8:1–9. doi: 10.1038/ncomms15768. PubMed DOI PMC
Sharma P, et al. Conformational domain wall switch. Adv. Func. Mater. 2019;29:1807523. doi: 10.1002/adfm.201807523. DOI
Sharma P, et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 2017;3:e1700512. doi: 10.1126/sciadv.1700512. PubMed DOI PMC
Boyn S, et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 2017;8:1–7. doi: 10.1038/ncomms14736. PubMed DOI PMC
Muralt P. Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 2000;10:136. doi: 10.1088/0960-1317/10/2/307. DOI
Setter N, et al. Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 2006;100:051606. doi: 10.1063/1.2336999. DOI
Tagantsev A, Cross L, Fousek J. Domains in ferroic crystals and thin films. Berlin: Springer; 2010.
Taylor D, Damjanovic D. Evidence of domain wall contribution to the dielectric permittivity in PZT thin films at subswitching fields. J. Appl. Phys. 1997;82:1973–1975. doi: 10.1063/1.366006. DOI
Damjanovic D. Logarithmic frequency dependence of the piezoelectric effect due to pinning of ferroelectric-ferroelastic domain walls. Phys. Rev. B. 1997;55:R649. doi: 10.1103/PhysRevB.55.R649. DOI
Feigl L, et al. Controlled stripes of ultrafine ferroelectric domains. Nat. Commun. 2014;5:1–9. doi: 10.1038/ncomms5677. PubMed DOI
Nesterov O, et al. Thickness scaling of ferroelastic domains in PbTiO3 films on DyScO3. Appl. Phys. Lett. 2013;103:142901. doi: 10.1063/1.4823536. DOI
Sung JH, et al. Single ferroelectric-domain photovoltaic switch based on lateral BiFeO3 cells. NPG Asia Mater. 2013;5:e38–e38. doi: 10.1038/am.2013.1. DOI
Karpov D, et al. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field. Nat. Commun. 2017;8:1–8. doi: 10.1038/s41467-017-00318-9. PubMed DOI PMC
Catalan G, et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 2011;10:963–967. doi: 10.1038/nmat3141. PubMed DOI
Khan AI, Marti X, Serrao C, Ramesh R, Salahuddin S. Voltage-controlled ferroelastic switching in Pb (Zr0.2Ti08) O3 thin films. NanoLett. 2015;15:2229–2234. doi: 10.1021/nl503806p. PubMed DOI
Ohring M, editor. Materials science of thin films, 2nd edn. San Diego: Academic Press; 2002.
Ivry Y, Chu D, Scott JF, Durkan C. Domains beyond the grain boundary. Adv. Funct. Mater. 2011;21:1827–1832. doi: 10.1002/adfm.201002142. DOI
Mantri S, Oddershede J, Damjanovic D, Daniels JE. Ferroelectric domain continuity over grain boundaries. Acta Mater. 2017;128:400–405. doi: 10.1016/j.actamat.2017.01.065. DOI
Marincel DM, et al. Domain wall motion across various grain boundaries in ferroelectric thin films. J. Am. Ceram. Soc. 2015;98:1848–1857. doi: 10.1111/jace.13535. DOI
Sluka T, Tagantsev AK, Bednyakov P, Setter N. Freeelectron gas at charged domain walls in insulating BaTiO 3. Nat. Commun. 2013;4:1–6. doi: 10.1038/ncomms2839. PubMed DOI PMC
Plekh M, Narkilahti J, Levoska J, Tyunina M. Polydomain configuration in epitaxial Pb0.5Sr0.5TiO3/La0.5Sr0.5CoO3 heterostructures. Appl. Phys. Lett. 2010;97:202909. doi: 10.1063/1.3519977. DOI
Plekh M, Tyunina M. Ferroelectric domains in epitaxial PbZr 065 Ti 0.35 O 3/La 05 Sr 0.5 CoO 3 heterostructures. Appl. Phys. Lett. 2010;97:062902. doi: 10.1063/1.3467201. DOI
Tyunina M, Yao L, Plekh M, Levoska J, van Dijken S. Epitaxial ferroelectric heterostructures with nanocolumnenhanced dynamic properties. Adv. Funct. Mater. 2013;23:467–474. doi: 10.1002/adfm.201201528. DOI
Ganpule C, et al. Role of 90 domains in lead zirconatetitanate thin films. Appl. Phys. Lett. 2000;77:292–294. doi: 10.1063/1.126954. DOI
Roytburd, A. L. Elastic domains in ferroelectric epitaxial films. In
Okazaki A, Kawaminami M. Lattice constant of strontium titanate at low temperatures. Mater. Res. Bull. 1973;8:545–550. doi: 10.1016/0025-5408(73)90130-X. DOI
Landolt, H. & Bornstein, R.
Andreeva N, Emelyanov AY. Low-temperature evolution of local polarization properties of PbZr0. 65Ti035O3 thin films probed by piezoresponse force microscopy. Appl. Phys. Lett. 1997;104:112905. doi: 10.1063/1.4869147. DOI
Pertsev N, Emelyanov AY. Stability diagram for elastic domains in epitaxial ferroelectric thin films. Phys. Solid State. 1997;39:109–115. doi: 10.1134/1.1129810. DOI
Romanov A, et al. Domain pattern formation in epitaxial rhombohedral ferroelectric films. II Interfacial defects and energetics. J. Appl. Phys. 1998;83:2754–2765. doi: 10.1063/1.366636. DOI
Pompe W, Gong X, Suo Z, Speck J. Elastic energy release due to domain formation in the strained epitaxy of ferroelectric and ferroelastic films. J. Appl. Phys. 1993;74:6012–6019. doi: 10.1063/1.355215. DOI
Pertsev N, Zembilgotov A. Energetics and geometry of 90 domain structures in epitaxial ferroelectric and ferroelastic films. J. Appl. Phys. 1995;78:6170–6180. doi: 10.1063/1.360561. DOI
Shur VY, Esin A, Alam M, Akhmatkhanov A. Superfast domain walls in KTP single crystals. Appl. Phys. Lett. 2017;111:152907. doi: 10.1063/1.5000582. DOI
Yudin P, Hrebtov MY, Dejneka A, McGilly L. Modeling the motion of ferroelectric domain walls with the classical Stefan problem. Phys. Rev. Appl. 2020;13:014006. doi: 10.1103/PhysRevApplied.13.014006. DOI
Meyer B, Vanderbilt D. Ab initio study of ferroelectric domain walls in PbTiO 3. Phys. Rev. B. 2002;65:104111. doi: 10.1103/PhysRevB.65.104111. DOI
Li Y, Chen L. Temperature-strain phase diagram for BaTiO3 thin films. Appl. Phys. Lett. 2006;88:072905. doi: 10.1063/1.2172744. DOI
Semenovskaya S, Khachaturyan A. Development of ferroelectric mixed states in a random field of static defects. J. Appl. Phys. 1998;83:5125–5136. doi: 10.1063/1.367330. DOI
Haun M, Zhuang Z, Furman E, Jang S, Cross LE. Thermodynamic theory of the lead zirconate-titanate solid solution system, part III: Curie constant and sixth-order polarization interaction dielectric stiffness coefficients. Ferroelectrics. 1989;99:45–54. doi: 10.1080/00150198908221438. DOI
Pertsev N, Kukhar V, Kohlstedt H, Waser R. Phase diagrams and physical properties of single-domain epitaxial Pb (Zr1-xTix) O 3 thin films. Phys. Rev. B. 2003;67:054107. doi: 10.1103/PhysRevB.67.054107. DOI
Li Y, Hu S, Liu Z, Chen L. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 2002;50:395–411. doi: 10.1016/S1359-6454(01)00360-3. DOI
Hlinka J, Ondrejkovic P, Marton P. The piezoelectric response of nanotwinned BaTiO3. Nanotechnology. 2009;20:105709. doi: 10.1088/0957-4484/20/10/105709. PubMed DOI
Tagantsev AK. Landau expansion for ferroelectrics: which variable to use? Ferroelectrics. 2008;375:19–27. doi: 10.1080/00150190802437746. DOI
Shirane G, Suzuki K, Takeda A. Phase transitions in solid solutions of PbZrO3 and PbTiO3 (II) X-ray study. J. Phys. Soc. Jpn. 1952;7:12–18. doi: 10.1143/JPSJ.7.12. DOI
Perantie J, Stratulat M, Hannu J, Jantunen H, Tyunina M. Enhancing polarization by electrode-controlled strain relaxation in PbTiO3 heterostructures. APL Mater. 2016;4:016104. doi: 10.1063/1.4939790. DOI