Mobile and immobile boundaries in ferroelectric films

. 2021 Jan 21 ; 11 (1) : 1899. [epub] 20210121

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33479382

Grantová podpora
19-02-00938 Russian Foundation for Basic Research
SOLID21, CZ.02.1.01/0.0/0.0/16_019/0000760 Operational Program Research, Development and Education
SOLID21, CZ.02.1.01/0.0/0.0/16_019/0000760 Operational Program Research, Development and Education
SOLID21, CZ.02.1.01/0.0/0.0/16_019/0000760 Operational Program Research, Development and Education
2017SGR 1506 Generalitat de Catalunya
298409 Academy of Finland
19-09671S Grantová Agentura České Republiky

Odkazy

PubMed 33479382
PubMed Central PMC7820330
DOI 10.1038/s41598-021-81516-w
PII: 10.1038/s41598-021-81516-w
Knihovny.cz E-zdroje

The intrinsic mobile interfaces in ferroelectrics-the domain walls can drive and enhance diverse ferroelectric properties, essential for modern applications. Control over the motion of domain walls is of high practical importance. Here we analyse theoretically and show experimentally epitaxial ferroelectric films, where mobile domain walls coexist and interact with immobile growth-induced interfaces-columnar boundaries. Whereas these boundaries do not disturb the long-range crystal order, they affect the behaviour of domain walls in a peculiar selective manner. The columnar boundaries substantially modify the behaviour of non-ferroelastic domains walls, but have negligible impact on the ferroelastic ones. The results suggest that introduction of immobile boundaries into ferroelectric films is a viable method to modify domain structures and dynamic responses at nano-scale that may serve to functionalization of a broader range of ferroelectric films where columnar boundaries naturally appear as a result of the 3D growth.

Zobrazit více v PubMed

Dawber M, Rabe K, Scott J. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 2005;77:1083. doi: 10.1103/RevModPhys.77.1083. DOI

Catalan G, Seidel J, Ramesh R, Scott JF. Domain wall nanoelectronics. Rev. Mod. Phys. 2012;84:119–156. doi: 10.1103/RevModPhys.84.119. DOI

McQuaid RG, Campbell MP, Whatmore RW, Kumar A, Gregg JM. Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite. Nat. Commun. 2017;8:1–7. doi: 10.1038/ncomms15105. PubMed DOI PMC

Cherifi-Hertel S, et al. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nat. Commun. 2017;8:1–9. doi: 10.1038/ncomms15768. PubMed DOI PMC

Sharma P, et al. Conformational domain wall switch. Adv. Func. Mater. 2019;29:1807523. doi: 10.1002/adfm.201807523. DOI

Sharma P, et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 2017;3:e1700512. doi: 10.1126/sciadv.1700512. PubMed DOI PMC

Boyn S, et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 2017;8:1–7. doi: 10.1038/ncomms14736. PubMed DOI PMC

Muralt P. Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 2000;10:136. doi: 10.1088/0960-1317/10/2/307. DOI

Setter N, et al. Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 2006;100:051606. doi: 10.1063/1.2336999. DOI

Tagantsev A, Cross L, Fousek J. Domains in ferroic crystals and thin films. Berlin: Springer; 2010.

Taylor D, Damjanovic D. Evidence of domain wall contribution to the dielectric permittivity in PZT thin films at subswitching fields. J. Appl. Phys. 1997;82:1973–1975. doi: 10.1063/1.366006. DOI

Damjanovic D. Logarithmic frequency dependence of the piezoelectric effect due to pinning of ferroelectric-ferroelastic domain walls. Phys. Rev. B. 1997;55:R649. doi: 10.1103/PhysRevB.55.R649. DOI

Feigl L, et al. Controlled stripes of ultrafine ferroelectric domains. Nat. Commun. 2014;5:1–9. doi: 10.1038/ncomms5677. PubMed DOI

Nesterov O, et al. Thickness scaling of ferroelastic domains in PbTiO3 films on DyScO3. Appl. Phys. Lett. 2013;103:142901. doi: 10.1063/1.4823536. DOI

Sung JH, et al. Single ferroelectric-domain photovoltaic switch based on lateral BiFeO3 cells. NPG Asia Mater. 2013;5:e38–e38. doi: 10.1038/am.2013.1. DOI

Karpov D, et al. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field. Nat. Commun. 2017;8:1–8. doi: 10.1038/s41467-017-00318-9. PubMed DOI PMC

Catalan G, et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 2011;10:963–967. doi: 10.1038/nmat3141. PubMed DOI

Khan AI, Marti X, Serrao C, Ramesh R, Salahuddin S. Voltage-controlled ferroelastic switching in Pb (Zr0.2Ti08) O3 thin films. NanoLett. 2015;15:2229–2234. doi: 10.1021/nl503806p. PubMed DOI

Ohring M, editor. Materials science of thin films, 2nd edn. San Diego: Academic Press; 2002.

Ivry Y, Chu D, Scott JF, Durkan C. Domains beyond the grain boundary. Adv. Funct. Mater. 2011;21:1827–1832. doi: 10.1002/adfm.201002142. DOI

Mantri S, Oddershede J, Damjanovic D, Daniels JE. Ferroelectric domain continuity over grain boundaries. Acta Mater. 2017;128:400–405. doi: 10.1016/j.actamat.2017.01.065. DOI

Marincel DM, et al. Domain wall motion across various grain boundaries in ferroelectric thin films. J. Am. Ceram. Soc. 2015;98:1848–1857. doi: 10.1111/jace.13535. DOI

Sluka T, Tagantsev AK, Bednyakov P, Setter N. Freeelectron gas at charged domain walls in insulating BaTiO 3. Nat. Commun. 2013;4:1–6. doi: 10.1038/ncomms2839. PubMed DOI PMC

Plekh M, Narkilahti J, Levoska J, Tyunina M. Polydomain configuration in epitaxial Pb0.5Sr0.5TiO3/La0.5Sr0.5CoO3 heterostructures. Appl. Phys. Lett. 2010;97:202909. doi: 10.1063/1.3519977. DOI

Plekh M, Tyunina M. Ferroelectric domains in epitaxial PbZr 065 Ti 0.35 O 3/La 05 Sr 0.5 CoO 3 heterostructures. Appl. Phys. Lett. 2010;97:062902. doi: 10.1063/1.3467201. DOI

Tyunina M, Yao L, Plekh M, Levoska J, van Dijken S. Epitaxial ferroelectric heterostructures with nanocolumnenhanced dynamic properties. Adv. Funct. Mater. 2013;23:467–474. doi: 10.1002/adfm.201201528. DOI

Ganpule C, et al. Role of 90 domains in lead zirconatetitanate thin films. Appl. Phys. Lett. 2000;77:292–294. doi: 10.1063/1.126954. DOI

Roytburd, A. L. Elastic domains in ferroelectric epitaxial films. In

Okazaki A, Kawaminami M. Lattice constant of strontium titanate at low temperatures. Mater. Res. Bull. 1973;8:545–550. doi: 10.1016/0025-5408(73)90130-X. DOI

Landolt, H. & Bornstein, R.

Andreeva N, Emelyanov AY. Low-temperature evolution of local polarization properties of PbZr0. 65Ti035O3 thin films probed by piezoresponse force microscopy. Appl. Phys. Lett. 1997;104:112905. doi: 10.1063/1.4869147. DOI

Pertsev N, Emelyanov AY. Stability diagram for elastic domains in epitaxial ferroelectric thin films. Phys. Solid State. 1997;39:109–115. doi: 10.1134/1.1129810. DOI

Romanov A, et al. Domain pattern formation in epitaxial rhombohedral ferroelectric films. II Interfacial defects and energetics. J. Appl. Phys. 1998;83:2754–2765. doi: 10.1063/1.366636. DOI

Pompe W, Gong X, Suo Z, Speck J. Elastic energy release due to domain formation in the strained epitaxy of ferroelectric and ferroelastic films. J. Appl. Phys. 1993;74:6012–6019. doi: 10.1063/1.355215. DOI

Pertsev N, Zembilgotov A. Energetics and geometry of 90 domain structures in epitaxial ferroelectric and ferroelastic films. J. Appl. Phys. 1995;78:6170–6180. doi: 10.1063/1.360561. DOI

Shur VY, Esin A, Alam M, Akhmatkhanov A. Superfast domain walls in KTP single crystals. Appl. Phys. Lett. 2017;111:152907. doi: 10.1063/1.5000582. DOI

Yudin P, Hrebtov MY, Dejneka A, McGilly L. Modeling the motion of ferroelectric domain walls with the classical Stefan problem. Phys. Rev. Appl. 2020;13:014006. doi: 10.1103/PhysRevApplied.13.014006. DOI

Meyer B, Vanderbilt D. Ab initio study of ferroelectric domain walls in PbTiO 3. Phys. Rev. B. 2002;65:104111. doi: 10.1103/PhysRevB.65.104111. DOI

Li Y, Chen L. Temperature-strain phase diagram for BaTiO3 thin films. Appl. Phys. Lett. 2006;88:072905. doi: 10.1063/1.2172744. DOI

Semenovskaya S, Khachaturyan A. Development of ferroelectric mixed states in a random field of static defects. J. Appl. Phys. 1998;83:5125–5136. doi: 10.1063/1.367330. DOI

Haun M, Zhuang Z, Furman E, Jang S, Cross LE. Thermodynamic theory of the lead zirconate-titanate solid solution system, part III: Curie constant and sixth-order polarization interaction dielectric stiffness coefficients. Ferroelectrics. 1989;99:45–54. doi: 10.1080/00150198908221438. DOI

Pertsev N, Kukhar V, Kohlstedt H, Waser R. Phase diagrams and physical properties of single-domain epitaxial Pb (Zr1-xTix) O 3 thin films. Phys. Rev. B. 2003;67:054107. doi: 10.1103/PhysRevB.67.054107. DOI

Li Y, Hu S, Liu Z, Chen L. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 2002;50:395–411. doi: 10.1016/S1359-6454(01)00360-3. DOI

Hlinka J, Ondrejkovic P, Marton P. The piezoelectric response of nanotwinned BaTiO3. Nanotechnology. 2009;20:105709. doi: 10.1088/0957-4484/20/10/105709. PubMed DOI

Tagantsev AK. Landau expansion for ferroelectrics: which variable to use? Ferroelectrics. 2008;375:19–27. doi: 10.1080/00150190802437746. DOI

Shirane G, Suzuki K, Takeda A. Phase transitions in solid solutions of PbZrO3 and PbTiO3 (II) X-ray study. J. Phys. Soc. Jpn. 1952;7:12–18. doi: 10.1143/JPSJ.7.12. DOI

Perantie J, Stratulat M, Hannu J, Jantunen H, Tyunina M. Enhancing polarization by electrode-controlled strain relaxation in PbTiO3 heterostructures. APL Mater. 2016;4:016104. doi: 10.1063/1.4939790. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...