Challenging the Integrity of Rhythmic Maternal Signals Revealed Gene-Specific Responses in the Fetal Suprachiasmatic Nuclei

. 2020 ; 14 () : 613531. [epub] 20210107

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33488354

During fetal stage, maternal circadian system sets the phase of the developing clock in the suprachiasmatic nuclei (SCN) via complex pathways. We addressed the issue of how impaired maternal signaling due to a disturbed environmental light/dark (LD) cycle affects the fetal SCN. We exposed pregnant Wistar rats to two different challenges - a 6-h phase shift in the LD cycle on gestational day 14, or exposure to constant light (LL) throughout pregnancy - and detected the impact on gene expression profiles in 19-day-old fetuses. The LD phase shift, which changed the maternal SCN into a transient state, caused robust downregulation of expression profiles of clock genes (Per1, Per2, and Nr1d1), clock-controlled (Dbp) genes, as well as genes involved in sensing various signals, such as c-fos and Nr3c1. Removal of the rhythmic maternal signals via exposure of pregnant rats to LL abolished the rhythms in expression of c-fos and Nr3c1 in the fetal SCN. We identified c-fos as the gene primarily responsible for sensing rhythmic maternal signals because its expression profile tracked the shifted or arrhythmic maternal SCN clock. Pathways related to the maternal rhythmic behavioral state were likely not involved in driving the c-fos expression rhythm. Instead, introduction of a behavioral rhythm to LL-exposed mothers via restricted feeding regime strengthened rhythm in Vip expression in the fetal SCN. Our results revealed for the first time that the fetal SCN is highly sensitive in a gene-specific manner to various changes in maternal signaling due to disturbances of environmental cycles related to the modern lifestyle in humans.

Zobrazit více v PubMed

Altman J., Bayer S. A. (1978). Development of the diencephalon in the rat. II. Correlation of the embryonic development of the hypothalamus with the time of origin of its neurons. J. Comp. Neurol. 182 973–993. 10.1002/cne.901820512 PubMed DOI

Amano T., Ripperger J. A., Albrecht U. (2020). Changing the light schedule in late pregnancy alters birth timing in mice. Theriogenology 154 212–222. 10.1016/j.theriogenology.2020.05.032 PubMed DOI

Bates K., Herzog E. D. (2020). Maternal-fetal circadian communication during pregnancy. Front. Endocrinol. (Lausanne) 11:198. 10.3389/fendo.2020.00198 PubMed DOI PMC

Bedont J. L., Blackshaw S. (2015). Constructing the suprachiasmatic nucleus: a watchmaker’s perspective on the central clockworks. Front. Syst. Neurosci. 9:74. 10.3389/fnsys.2015.00074 PubMed DOI PMC

Bellavía S. L., Carpentieri A. R., Vaqué A. M., Macchione A. F., Vermouth N. T. (2006). Pup circadian rhythm entrainment–effect of maternal ganglionectomy or pinealectomy. Physiol. Behav. 89 342–349. 10.1016/j.physbeh.2006.06.018 PubMed DOI

Carmona-Alcocer V., Abel J. H., Sun T. C., Petzold L. R., Doyle F. J., Simms C. L., et al. (2018). Ontogeny of circadian rhythms and synchrony in the suprachiasmatic nucleus. J. Neurosci. 38 1326–1334. 10.1523/jneurosci.2006-17.2017 PubMed DOI PMC

Carmona-Alcocer V., Rohr K. E., Joye D. A. M., Evans J. A. (2020). Circuit development in the master clock network of mammals. Eur. J. Neurosci. 51 82–108. 10.1111/ejn.14259 PubMed DOI PMC

Čečmanová V., Houdek P., Šuchmanová K., Sládek M., Sumová A. (2019). Development and entrainment of the fetal clock in the suprachiasmatic nuclei: the role of glucocorticoids. J. Biol. Rhythms 34 307–322. 10.1177/0748730419835360 PubMed DOI

Claustrat B., Valatx J.-L., Harthé C., Brun J. (2008). Effect of constant light on prolactin and corticosterone rhythms evaluated using a noninvasive urine sampling protocol in the rat. Horm. Metab. Res. 40 398–403. 10.1055/s-2008-1065330 PubMed DOI

Dauchy R. T., Dauchy E. M., Tirrell R. P., Hill C. R., Davidson L. K., Greene M. W., et al. (2010). Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats. Comp. Med. 60 348–356. PubMed PMC

Davis F. C., Gorski R. A. (1985a). Development of hamster circadian rhythms: prenatal entrainment of the pacemaker. J. Biol. Rhythms 1 77–89. 10.1177/074873048600100108 PubMed DOI

Davis F. C., Gorski R. A. (1985b). Development of hamster circadian rhythms. I. Within-litter synchrony of mother and pup activity rhythms at weaning. Biol. Reprod. 33 353–362. 10.1095/biolreprod33.2.353 PubMed DOI

Davis F. C., Mannion J. (1988). Entrainment of hamster pup circadian rhythms by prenatal melatonin injections to the mother. Am. J. Physiol. 255 R439–R448. PubMed

Duncan M. J., Banister M. J., Reppert S. M. (1986). Developmental appearance of light-dark entrainment in the rat. Brain Res. 369 326–330. 10.1016/0006-8993(86)90544-5 PubMed DOI

Eastman C., Rechtschaffen A. (1983). Circadian temperature and wake rhythms of rats exposed to prolonged continuous illumination. Physiol. Behav. 31 417–427. 10.1016/0031-9384(83)90061-6 PubMed DOI

El-Hennamy R., Matějů K., Bendová Z., Sosniyenko S., Sumová A. (2008). Maternal control of the fetal and neonatal rat suprachiasmatic nucleus. J. Biol. Rhythms 23 435–444. 10.1177/0748730408322635 PubMed DOI

Herzog E. D., Aton S. J., Numano R., Sakaki Y., Tei H. (2004). Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J. Biol. Rhythms 19 35–46. 10.1177/0748730403260776 PubMed DOI

Honma K. I., Hiroshige T. (1978). Endogenous ultradian rhythms in rats exposed to prolonged continuous light. Am. J. Physiol. 235 R250–R256. PubMed

Houdek P., Polidarová L., Nováková M., Matějů K., Kubík Š, Sumová A. (2015). Melatonin administered during the fetal stage affects circadian clock in the suprachiasmatic nucleus but not in the liver. Dev. Neurobiol. 75 131–144. 10.1002/dneu.22213 PubMed DOI

Houdek P., Sumová A. (2014). In vivo initiation of clock gene expression rhythmicity in fetal rat suprachiasmatic nuclei. PLoS One 9:e107360. 10.1371/journal.pone.0107360 PubMed DOI PMC

Humlová M., Illnerová H. (1992). Resetting of the rat circadian clock after a shift in the light/dark cycle depends on the photoperiod. Neurosci. Res. 13 147–153. 10.1016/0168-0102(92)90095-t PubMed DOI

Jin X., Shearman L. P., Weaver D. R., Zylka M. J., de Vries G. J., Reppert S. M. (1999). A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96 57–68. 10.1016/s0092-8674(00)80959-9 PubMed DOI

Kováčiková Z., Sládek M., Bendová Z., Illnerová H., Sumová A. (2006). Expression of clock and clock-driven genes in the rat suprachiasmatic nucleus during late fetal and early postnatal development. J. Biol. Rhythms 21 140–148. 10.1177/0748730405285876 PubMed DOI

Landgraf D., Achten C., Dallmann F., Oster H. (2015). Embryonic development and maternal regulation of murine circadian clock function. Chronobiol. Int. 32 416–427. 10.3109/07420528.2014.986576 PubMed DOI

Liu A. C., Welsh D. K., Ko C. H., Tran H. G., Zhang E. E., Priest A. A., et al. (2007). Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129 605–616.10.1016/j.cell.2007.02.047 PubMed DOI PMC

Lowrey P. L., Takahashi J. S. (2011). Genetics of circadian rhythms in Mammalian model organisms. Adv. Genet. 74 175–230. 10.1016/b978-0-12-387690-4.00006-4 PubMed DOI PMC

Lucassen E. A., Coomans C. P., van Putten M., de Kreij S. R., van Genugten J. H. L. T., Sutorius R. P. M., et al. (2016). Environmental 24-hr cycles are essential for health. Curr. Biol. 26 1843–1853.10.1016/j.cub.2016.05.038 PubMed DOI

Mendez N., Abarzua-Catalan L., Vilches N., Galdames H. A., Spichiger C., Richter H. G., et al. (2012). Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light. PLoS One 7:e42713. 10.1371/journal.pone.0042713 PubMed DOI PMC

Mendez N., Halabi D., Spichiger C., Salazar E. R., Vergara K., Alonso-Vasquez P., et al. (2016). Gestational chronodisruption impairs circadian physiology in rat male offspring, increasing the risk of chronic disease. Endocrinology 157 4654–4668. 10.1210/en.2016-1282 PubMed DOI

Moore R. Y., Bernstein M. E. (1989). Synaptogenesis in the rat suprachiasmatic nucleus demonstrated by electron microscopy and synapsin I immunoreactivity. J. Neurosci. 9 2151–2162. 10.1523/jneurosci.09-06-02151.1989 PubMed DOI PMC

Moore R. Y., Eichler V. B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42 201–206. 10.1016/0006-8993(72)90054-6 PubMed DOI

Morin L. P., Allen C. N. (2006). The circadian visual system, 2005. Brain Res. Rev. 51 1–60. 10.1016/j.brainresrev.2005.08.003 PubMed DOI

Nishide S. Y., Honma S., Honma K. I. (2008). The circadian pacemaker in the cultured suprachiasmatic nucleus from pup mice is highly sensitive to external perturbation. Eur. J. Neurosci. 27 2686–2690. 10.1111/j.1460-9568.2008.06231.x PubMed DOI

Nováková M., Polidarová L., Sládek M., Sumová A. (2011). Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light. Neuroscience 197 65–71. 10.1016/j.neuroscience.2011.09.028 PubMed DOI

Nováková M., Sládek M., Sumová A. (2010). Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime. J. Biol. Rhythms 25 350–360. 10.1177/0748730410377967 PubMed DOI

Ohta H., Yamazaki S., McMahon D. G. (2005). Constant light desynchronizes mammalian clock neurons. Nat. Neurosci. 8 267–269.10.1038/nn1395 PubMed DOI

Park S. Y., Walker J. J., Johnson N. W., Zhao Z., Lightman S. L., Spiga F. (2013). Constant light disrupts the circadian rhythm of steroidogenic proteins in the rat adrenal gland. Mol. Cell Endocrinol. 371 114–123. 10.1016/j.mce.2012.11.010 PubMed DOI

Ralph M. R., Foster R. G., Davis F. C., Menaker M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science 247 975–978. 10.1126/science.2305266 PubMed DOI

Reppert S. M., Schwartz W. J. (1986). Maternal suprachiasmatic nuclei are necessary for maternal coordination of the developing circadian system. J. Neurosci. 6 2724–2729.10.1523/jneurosci.06-09-02724.1986 PubMed DOI PMC

Richter H. G., Mendez N., Abarzua-Catalan L., Valenzuela G. J., Seron-Ferre M., Torres-Farfan C. (2018). Developmental programming of capuchin monkey adrenal dysfunction by gestational chronodisruption. Biomed. Res. Int. 2018:9183053. PubMed PMC

Salazar E. R., Richter H. G., Spichiger C., Mendez N., Halabi D., Vergara K., et al. (2018). Gestational chronodisruption leads to persistent changes in the rat fetal and adult adrenal clock and function. J. Physiol. 596 5839–5857. 10.1113/jp276083 PubMed DOI PMC

Sládek M., Sumová A., Kováčiková Z., Bendová Z., Laurinová K., Illnerová H. (2004). Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc. Natl. Acad. Sci. U.S.A. 101 6231–6236. 10.1073/pnas.0401149101 PubMed DOI PMC

Smarr B. L., Grant A. D., Perez L., Zucker I., Kriegsfeld L. J. (2017). Maternal and early-life circadian disruption have long-lasting negative consequences on offspring development and adult behavior in mice. Sci. Rep. 7:3326. PubMed PMC

Sumová A., Čečmanová V. (2020). Mystery of rhythmic signal emergence within the suprachiasmatic nuclei. Eur. J. Neurosci. 51 300–309. 10.1111/ejn.14141 PubMed DOI

Sumová A., Sládek M., Polidarová L., Nováková M., Houdek P. (2012). Circadian system from conception till adulthood. Prog. Brain Res. 199 83–103. 10.1016/b978-0-444-59427-3.00005-8 PubMed DOI

Takeo Y., Shirama K., Shimizu K., Maekawa K. (1975). Correlation between sexual maturation and induction of persistent estrus by continuous illumination. Endocrinol. Jpn. 22 453–456. 10.1507/endocrj1954.22.453 PubMed DOI

Tapia-Osorio A., Salgado-Delgado R., Angeles-Castellanos M., Escobar C. (2013). Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behav. Brain Res. 252 1–9. 10.1016/j.bbr.2013.05.028 PubMed DOI

Torres-Farfan C., Mendez N., Abarzua-Catalan L., Vilches N., Valenzuela G. J., Seron-Ferre M. (2011). A circadian clock entrained by melatonin is ticking in the rat fetal adrenal. Endocrinology 152 1891–1900. 10.1210/en.2010-1260 PubMed DOI

Varcoe T. J., Gatford K. L., Kennaway D. J. (2018). Maternal circadian rhythms and the programming of adult health and disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314 R231–R241. PubMed

Viswanathan N., Davis F. C. (1997). Single prenatal injections of melatonin or the D1-dopamine receptor agonist SKF 38393 to pregnant hamsters sets the offsprings’ circadian rhythms to phases 180 degrees apart. J. Comp. Physiol. A 180 339–346. 10.1007/s003590050053 PubMed DOI

Viswanathan N., Weaver D. R., Reppert S. M., Davis F. C. (1994). Entrainment of the fetal hamster circadian pacemaker by prenatal injections of the dopamine agonist SKF 38393. J. Neurosci. 14 5393–5398. 10.1523/jneurosci.14-09-05393.1994 PubMed DOI PMC

Weaver D. R., Reppert S. M. (1989). Periodic feeding of SCN-lesioned pregnant rats entrains the fetal biological clock. Dev. Brain Res. 46 291–295. 10.1016/0165-3806(89)90292-7 PubMed DOI

Webb A. B., Angelo N., Huettner J. E., Herzog E. D. (2009). Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc. Natl. Acad. Sci. U.S.A. 106 16493–16498. 10.1073/pnas.0902768106 PubMed DOI PMC

Welsh D. K., Logothetis D. E., Meister M., Reppert S. M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14 697–706. 10.1016/0896-6273(95)90214-7 PubMed DOI

Wideman C. H., Murphy H. M. (2009). Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats. Nutr. Neurosci. 12 233–240. 10.1179/147683009x423436 PubMed DOI

Wreschnig D., Dolatshad H., Davis F. C. (2014). Embryonic development of circadian oscillations in the mouse hypothalamus. J. Biol. Rhythms 29 299–310. 10.1177/0748730414545086 PubMed DOI

Zordan M. A., Rosato E., Piccin A., Foster R. (2001). Photic entrainment of the circadian clock: from Drosophila to mammals. Semin. Cell Dev. Biol. 12 317–328. 10.1006/scdb.2001.0259 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...